Do you want to publish a course? Click here

Exponents of 2-multiarrangements and multiplicity lattices

95   0   0.0 ( 0 )
 Added by Yasuhide Numata
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a concept of multiplicity lattices of 2-multiarrangements, determine the combinatorics and geometry of that lattice, and give a criterion and method to construct a basis for derivation modules effectively.



rate research

Read More

The addition-deletion theorems for hyperplane arrangements, which were originally shown in [H. Terao, Arrangements of hyperplanes and their freeness I, II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 293--320], provide useful ways to construct examples of free arrangements. In this article, we prove addition-deletion theorems for multiarrangements. A key to the generalization is the definition of a new multiplicity, called the Euler multiplicity, of a restricted multiarrangement. We compute the Euler multiplicities in many cases. Then we apply the addition-deletion theorems to various arrangements including supersolvable arrangements and the Coxeter arrangement of type $A_{3}$ to construct free and non-free multiarrangements.
60 - Takuro Abe , Lukas Kuhne 2019
Hyperplane Arrangements of rank $3$ admitting an unbalanced Ziegler restriction are known to fulfill Teraos conjecture. This long-standing conjecture asks whether the freeness of an arrangement is determined by its combinatorics. In this note, we prove that arrangements that admit a locally heavy flag satisfy Teraos conjecture which is a generalization of the statement above to arbitrary dimension. To this end, we extend results characterizing the freeness of multiarrangements with a heavy hyperplane to those satisfying the weaker notion of a locally heavy hyperplane. As a corollary, we give a new proof that irreducible arrangements with a generic hyperplane are totally non-free. In another application, we show that an irreducible multiarrangement of rank $3$ with at least two locally heavy hyperplanes is not free.
149 - Takuro Abe 2008
We introduce a new definition of a generalized logarithmic module of multiarrangements by uniting those of the logarithmic derivation and the differential modules. This module is realized as a logarithmic derivation module of an arrangement of hyperplanes with a multiplicity consisting of both positive and negative integers. We consider several properties of this module including Saitos criterion and reflexivity. As applications, we prove a shift isomorphism and duality of some Coxeter multiarrangements by using the primitive derivation.
We study structures of derivation modules of Coxeter multiarrangements with quasi-constant multiplicities by using the primitive derivation. As an application, we show that the characteristic polynomial of a Coxeter multiarrangement with quasi-constant multiplicity is combinatorially computable.
The study of entrywise powers of matrices was originated by Loewner in the pursuit of the Bieberbach conjecture. Since the work of FitzGerald and Horn (1977), it is known that $A^{circ alpha} := (a_{ij}^alpha)$ is positive semidefinite for every entrywise nonnegative $n times n$ positive semidefinite matrix $A = (a_{ij})$ if and only if $alpha$ is a positive integer or $alpha geq n-2$. This surprising result naturally extends the Schur product theorem, and demonstrates the existence of a sharp phase transition in preserving positivity. In this paper, we study when entrywise powers preserve positivity for matrices with structure of zeros encoded by graphs. To each graph is associated an invariant called its critical exponent, beyond which every power preserves positivity. In our main result, we determine the critical exponents of all chordal/decomposable graphs, and relate them to the geometry of the underlying graphs. We then examine the critical exponent of important families of non-chordal graphs such as cycles and bipartite graphs. Surprisingly, large families of dense graphs have small critical exponents that do not depend on the number of vertices of the graphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا