No Arabic abstract
Hyperplane Arrangements of rank $3$ admitting an unbalanced Ziegler restriction are known to fulfill Teraos conjecture. This long-standing conjecture asks whether the freeness of an arrangement is determined by its combinatorics. In this note, we prove that arrangements that admit a locally heavy flag satisfy Teraos conjecture which is a generalization of the statement above to arbitrary dimension. To this end, we extend results characterizing the freeness of multiarrangements with a heavy hyperplane to those satisfying the weaker notion of a locally heavy hyperplane. As a corollary, we give a new proof that irreducible arrangements with a generic hyperplane are totally non-free. In another application, we show that an irreducible multiarrangement of rank $3$ with at least two locally heavy hyperplanes is not free.
We introduce a new class of arrangements of hyperplanes, called (strictly) plus-one generated arrangements, from algebraic point of view. Plus-one generatedness is close to freeness, i.e., plus-one generated arrangements have their logarithmic derivation modules generated by dimension plus one elements, with relations containing one linear form coefficient. We show that strictly plus-one generated arrangements can be obtained if we delete a hyperplane from free arrangements. We show a relative freeness criterion in terms of plus-one generatedness. In particular, for plane arrangements, we show that a free arrangement is in fact surrounded by free or strictly plus-one generated arrangements. We also give several applications.
We introduce a new definition of a generalized logarithmic module of multiarrangements by uniting those of the logarithmic derivation and the differential modules. This module is realized as a logarithmic derivation module of an arrangement of hyperplanes with a multiplicity consisting of both positive and negative integers. We consider several properties of this module including Saitos criterion and reflexivity. As applications, we prove a shift isomorphism and duality of some Coxeter multiarrangements by using the primitive derivation.
The addition-deletion theorems for hyperplane arrangements, which were originally shown in [H. Terao, Arrangements of hyperplanes and their freeness I, II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 293--320], provide useful ways to construct examples of free arrangements. In this article, we prove addition-deletion theorems for multiarrangements. A key to the generalization is the definition of a new multiplicity, called the Euler multiplicity, of a restricted multiarrangement. We compute the Euler multiplicities in many cases. Then we apply the addition-deletion theorems to various arrangements including supersolvable arrangements and the Coxeter arrangement of type $A_{3}$ to construct free and non-free multiarrangements.
In this paper we introduce an effective method to construct rational deformations between couples of Borel-fixed ideals. These deformations are governed by flat families, so that they correspond to rational curves on the Hilbert scheme. Looking globally at all the deformations among Borel-fixed ideals defining points on the same Hilbert scheme, we are able to give a new proof of the connectedness of the Hilbert scheme and to introduce a new criterion to establish whenever a set of points defined by Borel ideals lies on a common component of the Hilbert scheme. The paper contains a detailed algorithmic description of the technique and all the algorithms are made available.
We define specific multiplicities on the braid arrangement by using edge-bicolored graphs. To consider their freeness, we introduce the notion of bicolor-eliminable graphs as a generalization of Stanleys classification theory of free graphic arrangements by chordal graphs. This generalization gives us a complete classification of the free multiplicities defined above. As an application, we prove one direction of a conjecture of Athanasiadis on the characterization of the freeness of the deformation of the braid arrangement in terms of directed graphs.