Do you want to publish a course? Click here

Hadron multiplicities, pT-spectra and net-baryon number in central Pb+Pb collisions at the LHC

241   0   0.0 ( 0 )
 Added by Kari J. Eskola
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We compute the initial energy density and net baryon number density in 5% most central Pb+Pb collisions at $sqrt s=5.5$ TeV from pQCD + (final state) saturation, and describe the evolution of the produced system with boost-invariant transversely expanding hydrodynamics. In addition to the total multiplicity at midrapidity, we give predictions for the multiplicity of charged hadrons, pions, kaons and (anti)protons, for the total transverse energy and net-baryon number, as well as for the $p_T$-spectrum of charged hadrons, pions and kaons. We also predict the region of applicability of hydrodynamics by comparing these results with high-$p_T$ hadron spectra computed from pQCD and energy losses.



rate research

Read More

150 - Smbat Grigoryan 2021
A three component model, consisting of the hydrodynamical blast-wave term and two power-law terms, is proposed to fit accurately the hadron spectra measured at midrapidity and for arbitrary transverse momenta ($p_textrm{T}$) in pp and heavy-ion collisions of different centralities at the LHC. The model describes well the available experimental data for all considered particles from pions to charmonia in pp at $sqrt{s}=$ 2.76, 5.02, 7, 8 and 13 TeV and in Pb-Pb at $sqrt{s_mathrm{NN}}=$ 2.76 and 5.02 TeV.
148 - Martin Spousta , Brian Cole 2015
Results are presented from a phenomenological analysis of recent measurements of jet suppression and modifications of jet fragmentation functions in Pb+Pb collisions at the LHC. Particular emphasis is placed on the impact of the differences between quark and gluon jet quenching on the transverse momentum ($p_{T}^{jet}$) dependence of the jet $R_{AA}$ and on the fragmentation functions, $D(z)$. Primordial quark and gluon parton distributions were obtained from PYTHIA8 and were parameterized using simple power-law functions and extensions to the power-law function which were found to better describe the PYTHIA8 parton spectra. A simple model for the quark energy loss based on the shift formalism is used to model $R_{AA}$ and $D(z)$ using both analytic results and using direct Monte-Carlo sampling of the PYTHIA parton spectra. The model is capable of describing the full $p_{T}^{jet}$ , rapidity, and centrality dependence of the measured jet $R_{AA}$ using three effective parameters. A key result from the analysis is that the $D(z)$ modifications observed in the data, excluding the enhancement at low-$z$, may result primarily from the different quenching of the quarks and gluons. The model is also capable of reproducing the charged hadron $R_{AA}$ at high transverse momentum. Predictions are made for the jet $R_{AA}$ at large rapidities where it has not yet been measured and for the rapidity dependence of $D(z)$.
We compute predictions for various low-transverse-momentum bulk observables in $sqrt{s_{NN}} = 5.023$ TeV Pb+Pb collisions at the LHC from the event-by-event next-to-leading-order perturbative-QCD + saturation + viscous hydrodynamics (EKRT) model. In particular, we consider the centrality dependence of charged hadron multiplicity, flow coefficients of the azimuth-angle asymmetries and correlations of event-plane angles. The centrality dependencies of the studied observables are predicted to be very similar to those at 2.76 TeV, and the magnitudes of the flow coefficients and event-plane angle correlations are predicted to be close to those at 2.76 TeV. The flow coefficients may, however, offer slightly more discriminating power on the temperature dependence of QCD matter viscosity than the 2.76 TeV measurements. Our prediction for the multiplicity in the 0-5% centrality class, obtained using the two temperature-dependent shear-viscosity-to-entropy ratios that give the best overall fit to RHIC and LHC data is $dN_{rm ch}/detabig|_{|eta|le 0.5} =1876dots2046$. We also predict a power-law increase from 200 GeV Au+Au collisions at RHIC to 2.76 and 5.023 TeV Pb+Pb collisions at the LHC, $dN_{rm ch}/detabig|_{|eta|le 0.5} propto s^{0.164dots0.174}$.
The systematics of Statistical Model parameters extracted from heavy-ion collisions at lower energies are exploited to extrapolate in the LHC regime. Predictions of various particle ratios are presented and particle production in central Pb-Pb collisions at LHC is discussed in the context of the Statistical Model. The sensitivity of several ratios on the temperature and the baryon chemical potential is studied in detail, and some of them, which are particularly appropriate to determine the chemical freeze-out point experimentally, are indicated. The impact of feed-down contributions from resonances, especially to light hadrons, is illustrated.
114 - Sushanta Tripathy 2020
Recent results for high multiplicity pp and p-Pb collisions have revealed that they exhibit heavy-ion-like behaviors. To understand the origin(s) of these unexpected phenomena, event shape observables such as transverse spherocity ($S_{rm 0}^{p_{rm T} = 1}$) and the relative transverse activity classifier ($R_{rm{T}}$) can be exploited as a powerful tools to disentangle soft (non-perturbative) and hard (perturbative) particle production. Here, the production of light-flavor hadrons is shown for various $S_{rm 0}^{p_{rm T} = 1}$ classes in pp collisions at $sqrt{s}$ = 13 $textrm{TeV}$ measured with the ALICE detector at the LHC are presented. The evolution of average transverse momentum ($langle p_{rm T}rangle$) with charged-particle multiplicity, and identified particle ratios as a function of $p_{rm T}$ for different $S_{rm 0}^{p_{rm T} = 1}$ are also presented. In addition, the system size dependence of charged-particle production in pp, p-Pb, and Pb-Pb collisions at $sqrt{s_{rm NN}}$ = 5.02 TeV is presented. The evolution of $langle p_{rm T}rangle$ in different topological regions as a function of $R_{rm{T}}$ are presented. Finally, using the same approach, we present a search for jet quenching behavior in small collision systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا