No Arabic abstract
We study motion of small particles in turbulence when the particle relaxation time falls in the range of inertial time-scales of the flow. Due to inertia, particles drift relative to the fluid. We show that the drift velocity is close to the Lagrangian velocity increments of turbulence at the particle relaxation time. We demonstrate that the collective drift of two close particles makes them see local velocity increments fluctuate fast and we introduce the corresponding Langevin description for separation dynamics. This allows to describe the behavior of the Lyapunov exponent and give the analogue of Richardsons law for separation above viscous scale.
Spatial distributions of heavy particles suspended in an incompressible isotropic and homogeneous turbulent flow are investigated by means of high resolution direct numerical simulations. In the dissipative range, it is shown that particles form fractal clusters with properties independent of the Reynolds number. Clustering is there optimal when the particle response time is of the order of the Kolmogorov time scale $tau_eta$. In the inertial range, the particle distribution is no longer scale-invariant. It is however shown that deviations from uniformity depend on a rescaled contraction rate, which is different from the local Stokes number given by dimensional analysis. Particle distribution is characterized by voids spanning all scales of the turbulent flow; their signature in the coarse-grained mass probability distribution is an algebraic behavior at small densities.
We compare experimental data and numerical simulations for the dynamics of inertial particles with finite density in turbulence. In the experiment, bubbles and solid particles are optically tracked in a turbulent flow of water using an Extended Laser Doppler Velocimetry technique. The probability density functions (PDF) of particle accelerations and their auto-correlation in time are computed. Numerical results are obtained from a direct numerical simulation in which a suspension of passive pointwise particles is tracked, with the same finite density and the same response time as in the experiment. We observe a good agreement for both the variance of acceleration and the autocorrelation timescale of the dynamics; small discrepancies on the shape of the acceleration PDF are observed. We discuss the effects induced by the finite size of the particles, not taken into account in the present numerical simulations.
Photoelectron momentum distributions (PMDs) from atoms and molecules undergo qualitative changes as laser parameters are varied. We present a model to interpret the shape of the PMDs. The electrons motion is guided by a fictitious particle in our model, clearly characterizing two distinct dynamical behaviors: direct ionization and rescattering. As laser ellipticity is varied, our model reproduces the bifurcation in the PMDs seen in experiments.
We present a numerical study of two-dimensional turbulent flows in the enstrophy cascade regime, with different large-scale forcings and energy sinks. In particular, we study the statistics of more-than-differentiable velocity fluctuations by means of two recently introduced sets of statistical estimators, namely {it inverse statistics} and {it second order differences}. We show that the 2D turbulent velocity field, $bm u$, cannot be simply characterized by its spectrum behavior, $E(k) propto k^{-alpha}$. There exists a whole set of exponents associated to the non-trivial smooth fluctuations of the velocity field at all scales. We also present a numerical investigation of the temporal properties of $bm u$ measured in different spatial locations.
We present a sweep-stick mechanism for heavy particles transported by a turbulent flow under the action of gravity. Direct numerical simulations show that these particles preferentially explore regions of the flow with close to zero Lagrangian acceleration. However, the actual Lagrangian acceleration of the fluid elements where particles accumulate is not zero, and has a dependence on the Stokes number, the gravity acceleration, and the settling velocity of the particles.