Do you want to publish a course? Click here

Simultaneous Swift and REM monitoring of the blazar PKS0537-441 in 2005

155   0   0.0 ( 0 )
 Added by Elena Pian
 Publication date 2007
  fields Physics
and research's language is English
 Authors E. Pian




Ask ChatGPT about the research

The blazar PKS0537-441 has been observed by Swift between the end of 2004 and November 2005. The BAT monitored it recurrently for a total of 2.7 Ms, and the XRT and UVOT pointed it on seven occasions for a total of 67 ks, making it one of the AGNs best monitored by Swift. The automatic optical and infrared telescope REM has monitored simultaneously the source at all times. In January-February 2005 PKS0537-441 has been detected at its brightest in optical and X-rays: more than a factor of 2 brighter in X-rays and about a factor 60 brighter in the optical than observed in December 2004. The July 2005 observation recorded a fainter X-ray state. The simultaneous optical state, monitored by both Swift UVOT and REM, is high, and in the VRI bands it is comparable to what was recorded in early January 2005, before the outburst. In November 2005, the source subsided both in X-rays and optical to a quiescent state, having decreased by factors of ~4 and ~60 with respect to the January-February 2005 outburst, respectively. Our monitoring shows an overall well correlated optical and X-ray decay. On the shorter time scales (days or hours), there is no obvious correlation between X-ray and optical variations, but the former tend to be more pronounced, opposite to what is observed on monthly time scales. The widely different amplitude of the long term variability in optical and X-rays is very unusual and makes this observation a unique case study for blazar activity. The spectral energy distributions are interpreted in terms of the synchrotron and inverse Compton mechanisms within a jet where the plasma radiates via internal shocks and the dissipation depends on the distance of the emitting region from the central engine (abridged).



rate research

Read More

137 - A. Dolcini , S. Covino , A. Treves 2005
Multiband VRIJHK photometry of the Blazar PKS 0537-441 obtained with the REM telescope from December 2004 to March 2005 is presented. A major period of activity is found with more than four magnitudes variability in the V filter in 50 days and of 2.5 in 10 days. In intensity and duration the activity is similar to that of 1972 reported by Eggen (1973), but it is much better documented. No clear evidence of variability on time-scale of minutes is found. The spectral energy distribution is roughly described by a power-law, with the weaker state being the softer.
The flat-spectrum radio quasar 3C 454.3 is well known to be a highly active and variable source with outbursts occurring across the whole electromagnetic spectrum over the last decades. In spring 2005, 3C 454.3 has been reported to exhibit a strong optical outburst which subsequently triggered multi-frequency observations of the source covering the radio up to gamma-ray bands. Here, we present first results of our near-IR/optical (V, R, I, H band) photometry performed between May 11 and August 5, 2005 with the Rapid Eye Mount (REM) at La Silla in Chile and the Automatic Imaging Telescope (AIT) of the Perugia University Observatory. 3C 454.3 was observed during an exceptional and historical high state with a subsequent decrease in brightness over our 86 days observing period. The continuum spectral behaviour during the flaring and declining phase suggests a synchrotron peak below the near-IR band as well as a geometrical origin of the variations e.g. due to changes in the direction of forward beaming.
Spectral variability is the main tool for constraining emission models of BL Lac objects. By means of systematic observations of the BL Lac prototype PKS 2155-304 in the infrared-optical band, we explore variability on the scales of months, days and hours. We made our observations with the robotic 60 cm telescope REM located at La Silla, Chile. VRIJHK filters were used. PKS 2155-304 was observed from May to December 2005. The wavelength interval explored, the total number of photometric points and the short integration time render our photometry substantially superior to previous ones for this source. On the basis of the intensity and colour we distinguish three different states of the source, each of duration of months, which include all those described in the literature. In particular, we report the highest state ever detected in the H band. The source varied by a factor of 4 in this band, much more than in the V band (a factor ~2). The source softened with increasing intensity, contrary to the general pattern observed in the UV-X-ray bands. On five nights of November we had nearly continuous monitoring for 2-3 hours. A variability episode with a time scale of ~24 h is well documented, a much more rapid flare with t=1-2 h, is also apparent, but is supported by relatively few points.
We present the results of a series of Swift and quasi simultaneous ground-based infra-red observations of the blazar 3C 454.3 carried out in April-May 2005 when the source was 10 to 30 times brighter than previously observed. We found 3C 454.3 to be very bright and variable at all frequencies covered by our instrumentation. The broad-band Spectral Energy Distribution (SED) shows the usual two-bump shape (in nu-nu f(nu) space) with the Infra-red, optical and UV data sampling the declining part of the synchrotron emission that, even during this extremely large outburst, had its maximum in the far-infrared. The X-ray spectral data from the XRT and BAT instruments are flat and due to inverse Compton emission. The remarkable SED observed implies that at the time of the Swift pointings 3C 454.3 was one of the brightest objects in the extragalactic sky with a gamma-ray emission similar or brighter than that of 3C 279 when observed in a high state by EGRET. Time variability in the optical-UV flux is very different from that in the X-ray data: while the first component varied by about a factor two within a single exposure, but remained approximately constant between different observations, the inverse Compton component did not vary on short time-scales but changed by more than a factor of 3 between observations separated by a few days. This different dynamical behaviour illustrates the need to collect simultaneous multi-frequency data over a wide range of time-scales to fully constrain physical parameters in blazars.
(Abridged) OJ287 is a BL Lac object that has shown double-peaked bursts at regular intervals of ~12 yr during the last ~40 yr. We analyse optical photopolarimetric monitoring data from 2005-2009, during which the latest double-peaked outburst occurred. The aim of this study is twofold: firstly, we aim to analyse variability patterns and statistical properties of the optical polarization light-curve. We find a strong preferred position angle in optical polarization. The preferred position angle can be explained by separating the jet emission into two components: an optical polarization core and chaotic jet emission. The optical polarization core is stable on time scales of years and can be explained as emission from an underlying quiescent jet component. The chaotic jet emission sometimes exhibits a circular movement in the Stokes plane. We interpret these events as a shock front moving forwards and backwards in the jet, swiping through a helical magnetic field. Secondly, we use our data to assess different binary black hole models proposed to explain the regularly appearing double-peaked bursts in OJ287. We compose a list of requirements a model has to fulfil. The list includes not only characteristics of the light-curve but also other properties of OJ287, such as the black hole mass and restrictions on accretion flow properties. We rate all existing models using this list and conclude that none of the models is able to explain all observations. We discuss possible new explanations and propose a new approach to understanding OJ287. We suggest that both the double-peaked bursts and the evolution of the optical polarization position angle could be explained as a sign of resonant accretion of magnetic field lines, a magnetic breathing of the disc.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا