No Arabic abstract
(Abridged) OJ287 is a BL Lac object that has shown double-peaked bursts at regular intervals of ~12 yr during the last ~40 yr. We analyse optical photopolarimetric monitoring data from 2005-2009, during which the latest double-peaked outburst occurred. The aim of this study is twofold: firstly, we aim to analyse variability patterns and statistical properties of the optical polarization light-curve. We find a strong preferred position angle in optical polarization. The preferred position angle can be explained by separating the jet emission into two components: an optical polarization core and chaotic jet emission. The optical polarization core is stable on time scales of years and can be explained as emission from an underlying quiescent jet component. The chaotic jet emission sometimes exhibits a circular movement in the Stokes plane. We interpret these events as a shock front moving forwards and backwards in the jet, swiping through a helical magnetic field. Secondly, we use our data to assess different binary black hole models proposed to explain the regularly appearing double-peaked bursts in OJ287. We compose a list of requirements a model has to fulfil. The list includes not only characteristics of the light-curve but also other properties of OJ287, such as the black hole mass and restrictions on accretion flow properties. We rate all existing models using this list and conclude that none of the models is able to explain all observations. We discuss possible new explanations and propose a new approach to understanding OJ287. We suggest that both the double-peaked bursts and the evolution of the optical polarization position angle could be explained as a sign of resonant accretion of magnetic field lines, a magnetic breathing of the disc.
We explore the variability and cross-frequency correlation of the flux density and polarization of the blazar OJ287, using imaging at 43 GHz with the Very Long Baseline Array, as well as optical and near-infrared polarimetry. The polarization and flux density in both the optical waveband and the 43 GHz compact core increased by a small amount in late 2005, and increased significantly along with the near-IR polarization and flux density over the course of 10 days in early 2006. Furthermore, the values of the electric vector position angle (EVPA) at the three wavebands are similar. At 43 GHz, the EVPA of the blazar core is perpendicular to the flow of the jet, while the EVPAs of emerging superluminal knots are aligned parallel to the jet axis. The core polarization is that expected if shear aligns the magnetic field at the boundary between flows of disparate velocities within the jet. Using variations in flux density, percentage polarization, and EVPA, we model the inner jet as a spine-sheath system. The model jet contains a turbulent spine of half-width 1.2 degrees and maximum Lorentz factor of 16.5, a turbulent sheath with Lorentz factor of 5, and a boundary region of sheared field between the spine and sheath. Transverse shocks propagating along the fast, turbulent spine can explain the superluminal knots. The observed flux density and polarization variations are then compatible with changes in the direction of the inner jet caused by a temporary change in the position of the core if the spine contains wiggles owing to an instability. In addition, we can explain a stable offset of optical and near-IR percentage polarization by a steepening of spectral index with frequency, as supported by the data.
We present results from an original observational campaign comprising five epoch optical photopolarimetrical observations of the BL Lac-type AGN OJ287 in the period 2012 November - 2013 April. The data are gathered with the Focal Reducer Rozhen 2 - FoReRo2 on the 2-m RCC telescope at NAO Rozhen, Bulgaria. We derive photometry and polarization in R-band, as well as position angle (P.A.). There are indications for correlation between polarization and brightness in R-band. Furthermore, observed variation in P.A. corresponds to a rotation of the plane of polarization of 5.80 deg per day.
We present the results of photometric observations of three TeV blazars, 3C 66A, S5 0954+658 and BL Lacertae, during the period 2013--2017. Our extensive observations were performed in a total of 360 nights which produced $sim$6820 image frames in BVRI bands. We study flux and spectral variability of these blazars on these lengthy timescales. We also examine the optical Spectral Energy Distributions of these blazars, which are crucial in understanding the emission mechanism of long-term variability in blazars. All three TeV blazars exhibited strong flux variability during our observations. The colour variations are mildly chromatic on long timescales for two of them. The nature of the long-term variability of 3C 66A and S5 0954+658 is consistent with a model of a non-thermal variable component that has a continuous injection of relativistic electrons with power law distributions around 4.3 and 4.6, respectively. However, the long-term flux and colour variability of BL Lac suggests that these can arise from modest changes in velocities or viewing angle toward the emission region, leading to variations in the Doppler boosting of the radiation by a factor ~1.2 over the period of these observations.
We present the results of 15 years of monitoring lensed quasars, which was conducted by the COSMOGRAIL programme at the Leonhard Euler 1.2m Swiss Telescope. The decade-long light curves of 23 lensed systems are presented for the first time. We complement our data set with other monitoring data available in the literature to measure the time delays in 18 systems, among which nine reach a relative precision better than 15% for at least one time delay. To achieve this, we developed an automated version of the curve-shifting toolbox PyCS to ensure robust estimation of the time delay in the presence of microlensing, while accounting for the errors due to the imperfect representation of microlensing. We also re-analysed the previously published time delays of RX J1131$-$1231 and HE 0435$-$1223, by adding six and two new seasons of monitoring, respectively, and confirming the previous time-delay measurements. When the time delay measurement is possible, we corrected the light curves of the lensed images from their time delay and present the difference curves to highlight the microlensing signal contained in the data. To date, this is the largest sample of decade-long lens monitoring data, which is useful to measure $H_0$ and the size of quasar accretion discs with microlensing as well as to study quasar variability.
We report on the acceleration properties of 329 features in 95 blazar jets from the MOJAVE VLBA program. Nearly half the features and three-quarters of the jets show significant changes in speed and/or direction. In general, apparent speed changes are distinctly larger than changes in direction, indicating that changes in the Lorentz factors of jet features dominate the observed speed changes rather than bends along the line of sight. Observed accelerations tend to increase the speed of features near the jet base, $lesssim 10-20$ parsecs projected, and decrease their speed at longer distances. The range of apparent speeds at fixed distance in an individual jet can span a factor of a few, indicating that shock properties and geometry may influence the apparent motions; however, we suggest that the broad trend of jet features increasing their speed near the origin is due to an overall acceleration of the jet flow out to de-projected distances of order $10^2$ parsecs, beyond which the flow begins to decelerate or remains nearly constant in speed. We estimate intrinsic rates of change of the Lorentz factors in the galaxy frame of order $dot{Gamma}/Gamma simeq 10^{-3}$ to $10^{-2}$ per year which can lead to total Lorentz factor changes of a factor of a few on the length scales observed here. Finally, we also find evidence for jet collimation at projected distances of $lesssim 10$ parsecs in the form of the non-radial motion and bending accelerations that tend to better align features with the inner jet.