Do you want to publish a course? Click here

Interpretation of heart rate variability via detrended fluctuation analysis and alpha-beta filter

100   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Detrended fluctuation analysis (DFA), suitable for the analysis of nonstationary time series, has confirmed the existence of persistent long-range correlations in healthy heart rate variability data. In this paper, we present the incorporation of the alpha-beta filter to DFA to determine patterns in the power-law behaviour that can be found in these correlations. Well-known simulated scenarios and real data involving normal and pathological circumstances were used to evaluate this process. The results presented here suggest the existence of evolving patterns, not always following a uniform power-law behaviour, that cannot be described by scaling exponents estimated using a linear procedure over two predefined ranges. Instead, the power law is observed to have a continuous variation with segment length. We also show that the study of these patterns, avoiding initial assumptions about the nature of the data, may confer advantages to DFA by revealing more clearly abnormal physiological conditions detected in congestive heart failure patients related to the existence of dominant characteristic scales.



rate research

Read More

Fluctuations in heart rate are intimately tied to changes in the physiological state of the organism. We examine and exploit this relationship by classifying a human subjects wake/sleep status using his instantaneous heart rate (IHR) series. We use a convolutional neural network (CNN) to build features from the IHR series extracted from a whole-night electrocardiogram (ECG) and predict every 30 seconds whether the subject is awake or asleep. Our training database consists of 56 normal subjects, and we consider three different databases for validation; one is private, and two are public with different races and apnea severities. On our private database of 27 subjects, our accuracy, sensitivity, specificity, and AUC values for predicting the wake stage are 83.1%, 52.4%, 89.4%, and 0.83, respectively. Validation performance is similar on our two public databases. When we use the photoplethysmography instead of the ECG to obtain the IHR series, the performance is also comparable. A robustness check is carried out to confirm the obtained performance statistics. This result advocates for an effective and scalable method for recognizing changes in physiological state using non-invasive heart rate monitoring. The CNN model adaptively quantifies IHR fluctuation as well as its location in time and is suitable for differentiating between the wake and sleep stages.
We use detrended fluctuation analysis (DFA) to study the dynamics of blood pressure oscillations and its feedback control in rats by analyzing systolic pressure time series before and after a surgical procedure that interrupts its control loop. We found, for each situation, a crossover between two scaling regions characterized by exponents that reflect the nature of the feedback control and its range of operation. In addition, we found evidences of adaptation in the dynamics of blood pressure regulation a few days after surgical disruption of its main feedback circuit. Based on the paradigm of antagonistic, bipartite (vagal and sympathetic) action of the central nerve system, we propose a simple model for pressure homeostasis as the balance between two nonlinear opposing forces, successfully reproducing the crossover observed in the DFA of actual pressure signals.
We describe an algorithm for simulating ultrasound propagation in random one-dimensional media, mimicking different microstructures by choosing physical properties such as domain sizes and mass densities from probability distributions. By combining a detrended fluctuation analysis (DFA) of the simulated ultrasound signals with tools from the pattern-recognition literature, we build a Gaussian classifier which is able to associate each ultrasound signal with its corresponding microstructure with a very high success rate. Furthermore, we also show that DFA data can be used to train a multilayer perceptron which estimates numerical values of physical properties associated with distinct microstructures.
The knowledge of transitions between regular, laminar or chaotic behavior is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods which however require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart rate variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e. chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our new measures to the heart rate variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias.
381 - Michael E. Wall 2002
This chapter describes gene expression analysis by Singular Value Decomposition (SVD), emphasizing initial characterization of the data. We describe SVD methods for visualization of gene expression data, representation of the data using a smaller number of variables, and detection of patterns in noisy gene expression data. In addition, we describe the precise relation between SVD analysis and Principal Component Analysis (PCA) when PCA is calculated using the covariance matrix, enabling our descriptions to apply equally well to either method. Our aim is to provide definitions, interpretations, examples, and references that will serve as resources for understanding and extending the application of SVD and PCA to gene expression analysis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا