No Arabic abstract
Fluctuations in heart rate are intimately tied to changes in the physiological state of the organism. We examine and exploit this relationship by classifying a human subjects wake/sleep status using his instantaneous heart rate (IHR) series. We use a convolutional neural network (CNN) to build features from the IHR series extracted from a whole-night electrocardiogram (ECG) and predict every 30 seconds whether the subject is awake or asleep. Our training database consists of 56 normal subjects, and we consider three different databases for validation; one is private, and two are public with different races and apnea severities. On our private database of 27 subjects, our accuracy, sensitivity, specificity, and AUC values for predicting the wake stage are 83.1%, 52.4%, 89.4%, and 0.83, respectively. Validation performance is similar on our two public databases. When we use the photoplethysmography instead of the ECG to obtain the IHR series, the performance is also comparable. A robustness check is carried out to confirm the obtained performance statistics. This result advocates for an effective and scalable method for recognizing changes in physiological state using non-invasive heart rate monitoring. The CNN model adaptively quantifies IHR fluctuation as well as its location in time and is suitable for differentiating between the wake and sleep stages.
Detrended fluctuation analysis (DFA), suitable for the analysis of nonstationary time series, has confirmed the existence of persistent long-range correlations in healthy heart rate variability data. In this paper, we present the incorporation of the alpha-beta filter to DFA to determine patterns in the power-law behaviour that can be found in these correlations. Well-known simulated scenarios and real data involving normal and pathological circumstances were used to evaluate this process. The results presented here suggest the existence of evolving patterns, not always following a uniform power-law behaviour, that cannot be described by scaling exponents estimated using a linear procedure over two predefined ranges. Instead, the power law is observed to have a continuous variation with segment length. We also show that the study of these patterns, avoiding initial assumptions about the nature of the data, may confer advantages to DFA by revealing more clearly abnormal physiological conditions detected in congestive heart failure patients related to the existence of dominant characteristic scales.
Digital hologram rendering can be performed by a convolutional neural network, trained with image pairs calculated by numerical wave propagation from sparse generating images. 512-by-512 pixeldigital Gabor magnitude holograms are successfully estimated from experimental interferograms by a standard UNet trained with 50,000 synthetic image pairs over 70 epochs.
In this work, a dense recurrent convolutional neural network (DRCNN) was constructed to detect sleep disorders including arousal, apnea and hypopnea using Polysomnography (PSG) measurement channels provided in the 2018 Physionet challenge database. Our model structure is composed of multiple dense convolutional units (DCU) followed by a bidirectional long-short term memory (LSTM) layer followed by a softmax output layer. The sleep events including sleep stages, arousal regions and multiple types of apnea and hypopnea are manually annotated by experts which enables us to train our proposed network using a multi-task learning mechanism. Three binary cross-entropy loss functions corresponding to sleep/wake, target arousal and apnea-hypopnea/normal detection tasks are summed up to generate our overall network loss function that is optimized using the Adam method. Our model performance was evaluated using two metrics: the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC). To measure our model generalization, 4-fold cross-validation was also performed. For training, our model was applied to full night recording data. Finally, the average AUPRC and AUROC values associated with the arousal detection task were 0.505 and 0.922, respectively on our testing dataset. An ensemble of four models trained on different data folds improved the AUPRC and AUROC to 0.543 and 0.931, respectively. Our proposed algorithm achieved the first place in the official stage of the 2018 Physionet challenge for detecting sleep arousals with AUPRC of 0.54 on the blind testing dataset.
Training deep directed graphical models with many hidden variables and performing inference remains a major challenge. Helmholtz machines and deep belief networks are such models, and the wake-sleep algorithm has been proposed to train them. The wake-sleep algorithm relies on training not just the directed generative model but also a conditional generative model (the inference network) that runs backward from visible to latent, estimating the posterior distribution of latent given visible. We propose a novel interpretation of the wake-sleep algorithm which suggests that better estimators of the gradient can be obtained by sampling latent variables multiple times from the inference network. This view is based on importance sampling as an estimator of the likelihood, with the approximate inference network as a proposal distribution. This interpretation is confirmed experimentally, showing that better likelihood can be achieved with this reweighted wake-sleep procedure. Based on this interpretation, we propose that a sigmoidal belief network is not sufficiently powerful for the layers of the inference network in order to recover a good estimator of the posterior distribution of latent variables. Our experiments show that using a more powerful layer model, such as NADE, yields substantially better generative models.
We consider the problem of optimizing the freshness of status updates that are sent from a large number of low-power sources to a common access point. The source nodes utilize carrier sensing to reduce collisions and adopt an asynchronized sleep-wake scheduling strategy to achieve a target network lifetime (e.g., 10 years). We use age of information (AoI) to measure the freshness of status updates, and design sleep-wake parameters for minimizing the weighted-sum peak AoI of the sources, subject to per-source battery lifetime constraints. When the sensing time (i.e., the time duration of carrier sensing) is zero, this sleep-wake design problem can be solved by resorting to a two-layer nested convex optimization procedure; however, for positive sensing times, the problem is non-convex. We devise a low-complexity solution to solve this problem and prove that, for practical sensing times that are short, the solution is within a small gap from the optimum AoI performance. When the mean transmission time of status-update packets is unknown, we devise a reinforcement learning algorithm that adaptively performs the following two tasks in an ``efficient way: a) it learns the unknown parameter, b) it also generates efficient controls that make channel access decisions. We analyze its performance by quantifying its ``regret, i.e., the sub-optimality gap between its average performance and the average performance of a controller that knows the mean transmission time. Our numerical and NS-3 simulation results show that our solution can indeed elongate the batteries lifetime of information sources, while providing a competitive AoI performance.