Do you want to publish a course? Click here

Extracting Event Temporal Relations via Hyperbolic Geometry

استخراج العلاقات الزمنية للحدث عبر الهندسة القطعي

466   0   3   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Detecting events and their evolution through time is a crucial task in natural language understanding. Recent neural approaches to event temporal relation extraction typically map events to embeddings in the Euclidean space and train a classifier to detect temporal relations between event pairs. However, embeddings in the Euclidean space cannot capture richer asymmetric relations such as event temporal relations. We thus propose to embed events into hyperbolic spaces, which are intrinsically oriented at modeling hierarchical structures. We introduce two approaches to encode events and their temporal relations in hyperbolic spaces. One approach leverages hyperbolic embeddings to directly infer event relations through simple geometrical operations. In the second one, we devise an end-to-end architecture composed of hyperbolic neural units tailored for the temporal relation extraction task. Thorough experimental assessments on widely used datasets have shown the benefits of revisiting the tasks on a different geometrical space, resulting in state-of-the-art performance on several standard metrics. Finally, the ablation study and several qualitative analyses highlighted the rich event semantics implicitly encoded into hyperbolic spaces.



References used
https://aclanthology.org/
rate research

Read More

Recent psychological studies indicate that individuals exhibiting suicidal ideation increasingly turn to social media rather than mental health practitioners. Personally contextualizing the buildup of such ideation is critical for accurate identifica tion of users at risk. In this work, we propose a framework jointly leveraging a user's emotional history and social information from a user's neighborhood in a network to contextualize the interpretation of the latest tweet of a user on Twitter. Reflecting upon the scale-free nature of social network relationships, we propose the use of Hyperbolic Graph Convolution Networks, in combination with the Hawkes process to learn the historical emotional spectrum of a user in a time-sensitive manner. Our system significantly outperforms state-of-the-art methods on this task, showing the benefits of both socially and personally contextualized representations.
Fine-grained temporal relation extraction (FineTempRel) aims to recognize the durations and timeline of event mentions in text. A missing part in the current deep learning models for FineTempRel is their failure to exploit the syntactic structures of the input sentences to enrich the representation vectors. In this work, we propose to fill this gap by introducing novel methods to integrate the syntactic structures into the deep learning models for FineTempRel. The proposed model focuses on two types of syntactic information from the dependency trees, i.e., the syntax-based importance scores for representation learning of the words and the syntactic connections to identify important context words for the event mentions. We also present two novel techniques to facilitate the knowledge transfer between the subtasks of FineTempRel, leading to a novel model with the state-of-the-art performance for this task.
Timeline Summarization identifies major events from a news collection and describes them following temporal order, with key dates tagged. Previous methods generally generate summaries separately for each date after they determine the key dates of eve nts. These methods overlook the events' intra-structures (arguments) and inter-structures (event-event connections). Following a different route, we propose to represent the news articles as an event-graph, thus the summarization becomes compressing the whole graph to its salient sub-graph. The key hypothesis is that the events connected through shared arguments and temporal order depict the skeleton of a timeline, containing events that are semantically related, temporally coherent and structurally salient in the global event graph. A time-aware optimal transport distance is then introduced for learning the compression model in an unsupervised manner. We show that our approach significantly improves on the state of the art on three real-world datasets, including two public standard benchmarks and our newly collected Timeline100 dataset.
To alleviate human efforts from obtaining large-scale annotations, Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples. Existing self-training methods suffer from the gradual drift p roblem, where noisy pseudo labels on unlabeled data are incorporated during training. To alleviate the noise in pseudo labels, we propose a method called MetaSRE, where a Relation Label Generation Network generates accurate quality assessment on pseudo labels by (meta) learning from the successful and failed attempts on Relation Classification Network as an additional meta-objective. To reduce the influence of noisy pseudo labels, MetaSRE adopts a pseudo label selection and exploitation scheme which assesses pseudo label quality on unlabeled samples and only exploits high-quality pseudo labels in a self-training fashion to incrementally augment labeled samples for both robustness and accuracy. Experimental results on two public datasets demonstrate the effectiveness of the proposed approach.
While pre-trained language models (PTLMs) have achieved noticeable success on many NLP tasks, they still struggle for tasks that require event temporal reasoning, which is essential for event-centric applications. We present a continual pre-training approach that equips PTLMs with targeted knowledge about event temporal relations. We design self-supervised learning objectives to recover masked-out event and temporal indicators and to discriminate sentences from their corrupted counterparts (where event or temporal indicators got replaced). By further pre-training a PTLM with these objectives jointly, we reinforce its attention to event and temporal information, yielding enhanced capability on event temporal reasoning. This **E**ffective **CON**tinual pre-training framework for **E**vent **T**emporal reasoning (ECONET) improves the PTLMs' fine-tuning performances across five relation extraction and question answering tasks and achieves new or on-par state-of-the-art performances in most of our downstream tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا