Do you want to publish a course? Click here

Text Detoxification using Large Pre-trained Neural Models

إزالة إزالة السموم النصية باستخدام النماذج العصبية الكبيرة المدربة مسبقا

487   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We present two novel unsupervised methods for eliminating toxicity in text. Our first method combines two recent ideas: (1) guidance of the generation process with small style-conditional language models and (2) use of paraphrasing models to perform style transfer. We use a well-performing paraphraser guided by style-trained language models to keep the text content and remove toxicity. Our second method uses BERT to replace toxic words with their non-offensive synonyms. We make the method more flexible by enabling BERT to replace mask tokens with a variable number of words. Finally, we present the first large-scale comparative study of style transfer models on the task of toxicity removal. We compare our models with a number of methods for style transfer. The models are evaluated in a reference-free way using a combination of unsupervised style transfer metrics. Both methods we suggest yield new SOTA results.



References used
https://aclanthology.org/
rate research

Read More

Recent developments in natural language generation (NLG) have bolstered arguments in favor of re-introducing explicit coding of discourse relations in the input to neural models. In the Methodius corpus, a meaning representation (MR) is hierarchicall y structured and includes discourse relations. Meanwhile pre-trained language models have been shown to implicitly encode rich linguistic knowledge which provides an excellent resource for NLG. By virtue of synthesizing these lines of research, we conduct extensive experiments on the benefits of using pre-trained models and discourse relation information in MRs, focusing on the improvement of discourse coherence and correctness. We redesign the Methodius corpus; we also construct another Methodius corpus in which MRs are not hierarchically structured but flat. We report experiments on different versions of the corpora, which probe when, where, and how pre-trained models benefit from MRs with discourse relation information in them. We conclude that discourse relations significantly improve NLG when data is limited.
Commonsense reasoning benchmarks have been largely solved by fine-tuning language models. The downside is that fine-tuning may cause models to overfit to task-specific data and thereby forget their knowledge gained during pre-training. Recent works o nly propose lightweight model updates as models may already possess useful knowledge from past experience, but a challenge remains in understanding what parts and to what extent models should be refined for a given task. In this paper, we investigate what models learn from commonsense reasoning datasets. We measure the impact of three different adaptation methods on the generalization and accuracy of models. Our experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers. We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
Recently, fine-tuning pre-trained language models (e.g., multilingual BERT) to downstream cross-lingual tasks has shown promising results. However, the fine-tuning process inevitably changes the parameters of the pre-trained model and weakens its cro ss-lingual ability, which leads to sub-optimal performance. To alleviate this problem, we leverage continual learning to preserve the original cross-lingual ability of the pre-trained model when we fine-tune it to downstream tasks. The experimental result shows that our fine-tuning methods can better preserve the cross-lingual ability of the pre-trained model in a sentence retrieval task. Our methods also achieve better performance than other fine-tuning baselines on the zero-shot cross-lingual part-of-speech tagging and named entity recognition tasks.
Modern transformer-based language models are revolutionizing NLP. However, existing studies into language modelling with BERT have been mostly limited to English-language material and do not pay enough attention to the implicit knowledge of language, such as semantic roles, presupposition and negations, that can be acquired by the model during training. Thus, the aim of this study is to examine behavior of the model BERT in the task of masked language modelling and to provide linguistic interpretation to the unexpected effects and errors produced by the model. For this purpose, we used a new Russian-language dataset based on educational texts for learners of Russian and annotated with the help of the National Corpus of the Russian language. In terms of quality metrics (the proportion of words, semantically related to the target word), the multilingual BERT is recognized as the best model. Generally, each model has distinct strengths in relation to a certain linguistic phenomenon. These observations have meaningful implications for research into applied linguistics and pedagogy, contribute to dialogue system development, automatic exercise making, text generation and potentially could improve the quality of existing linguistic technologies
Large language models benefit from training with a large amount of unlabeled text, which gives them increasingly fluent and diverse generation capabilities. However, using these models for text generation that takes into account target attributes, su ch as sentiment polarity or specific topics, remains a challenge. We propose a simple and flexible method for controlling text generation by aligning disentangled attribute representations. In contrast to recent efforts on training a discriminator to perturb the token level distribution for an attribute, we use the same data to learn an alignment function to guide the pre-trained, non-controlled language model to generate texts with the target attribute without changing the original language model parameters. We evaluate our method on sentiment- and topic-controlled generation, and show large performance gains over previous methods while retaining fluency and diversity.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا