Do you want to publish a course? Click here

When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute

عند الاهتمام يلتقي تكرار سريع: نماذج لغة التدريب مع حساب تقليل

270   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Large language models have become increasingly difficult to train because of the growing computation time and cost. In this work, we present SRU++, a highly-efficient architecture that combines fast recurrence and attention for sequence modeling. SRU++ exhibits strong modeling capacity and training efficiency. On standard language modeling tasks such as Enwik8, Wiki-103 and Billion Word datasets, our model obtains better bits-per-character and perplexity while using 3x-10x less training cost compared to top-performing Transformer models. For instance, our model achieves a state-of-the-art result on the Enwik8 dataset using 1.6 days of training on an 8-GPU machine. We further demonstrate that SRU++ requires minimal attention for near state-of-the-art performance. Our results suggest jointly leveraging fast recurrence with little attention as a promising direction for accelerating model training and inference.



References used
https://aclanthology.org/
rate research

Read More

Previous work has indicated that pretrained Masked Language Models (MLMs) are not effective as universal lexical and sentence encoders off-the-shelf, i.e., without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks u sing annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective lexical and sentence encoders even without any additional data, relying simply on self-supervision. We propose an extremely simple, fast, and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds with no access to additional external knowledge. Mirror-BERT relies on identical and slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during identity fine-tuning''. We report huge gains over off-the-shelf MLMs with Mirror-BERT both in lexical-level and in sentence-level tasks, across different domains and different languages. Notably, in sentence similarity (STS) and question-answer entailment (QNLI) tasks, our self-supervised Mirror-BERT model even matches the performance of the Sentence-BERT models from prior work which rely on annotated task data. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple Mirror-BERT fine-tuning approach can yield effective universal lexical and sentence encoders.
Advertising on e-commerce and social media sites deliver ad impressions at web scale on a daily basis driving value to both shoppers and advertisers. This scale necessitates programmatic ways of detecting unsuitable content in ads to safeguard custom er experience and trust. This paper focusses on techniques for training text classification models under resource constraints, built as part of automated solutions for advertising content moderation. We show how weak supervision, curriculum learning and multi-lingual training can be applied effectively to fine-tune BERT and its variants for text classification tasks in conjunction with different data augmentation strategies. Our extensive experiments on multiple languages show that these techniques detect adversarial ad categories with a substantial gain in precision at high recall threshold over the baseline.
Scenario-based question answering (SQA) requires retrieving and reading paragraphs from a large corpus to answer a question which is contextualized by a long scenario description. Since a scenario contains both keyphrases for retrieval and much noise , retrieval for SQA is extremely difficult. Moreover, it can hardly be supervised due to the lack of relevance labels of paragraphs for SQA. To meet the challenge, in this paper we propose a joint retriever-reader model called JEEVES where the retriever is implicitly supervised only using QA labels via a novel word weighting mechanism. JEEVES significantly outperforms a variety of strong baselines on multiple-choice questions in three SQA datasets.
Transfer learning based on pretraining language models on a large amount of raw data has become a new norm to reach state-of-the-art performance in NLP. Still, it remains unclear how this approach should be applied for unseen languages that are not c overed by any available large-scale multilingual language model and for which only a small amount of raw data is generally available. In this work, by comparing multilingual and monolingual models, we show that such models behave in multiple ways on unseen languages. Some languages greatly benefit from transfer learning and behave similarly to closely related high resource languages whereas others apparently do not. Focusing on the latter, we show that this failure to transfer is largely related to the impact of the script used to write such languages. We show that transliterating those languages significantly improves the potential of large-scale multilingual language models on downstream tasks. This result provides a promising direction towards making these massively multilingual models useful for a new set of unseen languages.
Large pretrained language models using the transformer neural network architecture are becoming a dominant methodology for many natural language processing tasks, such as question answering, text classification, word sense disambiguation, text comple tion and machine translation. Commonly comprising hundreds of millions of parameters, these models offer state-of-the-art performance, but at the expense of interpretability. The attention mechanism is the main component of transformer networks. We present AttViz, a method for exploration of self-attention in transformer networks, which can help in explanation and debugging of the trained models by showing associations between text tokens in an input sequence. We show that existing deep learning pipelines can be explored with AttViz, which offers novel visualizations of the attention heads and their aggregations. We implemented the proposed methods in an online toolkit and an offline library. Using examples from news analysis, we demonstrate how AttViz can be used to inspect and potentially better understand what a model has learned.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا