Do you want to publish a course? Click here

Constructing a Psychometric Testbed for Fair Natural Language Processing

بناء اختبار تدريجي لتجهيز اللغة الطبيعية العادلة

279   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Psychometric measures of ability, attitudes, perceptions, and beliefs are crucial for understanding user behavior in various contexts including health, security, e-commerce, and finance. Traditionally, psychometric dimensions have been measured and collected using survey-based methods. Inferring such constructs from user-generated text could allow timely, unobtrusive collection and analysis. In this paper we describe our efforts to construct a corpus for psychometric natural language processing (NLP) related to important dimensions such as trust, anxiety, numeracy, and literacy, in the health domain. We discuss our multi-step process to align user text with their survey-based response items and provide an overview of the resulting testbed which encompasses survey-based psychometric measures and accompanying user-generated text from 8,502 respondents. Our testbed also encompasses self-reported demographic information, including race, sex, age, income, and education - thereby affording opportunities for measuring bias and benchmarking fairness of text classification methods. We report preliminary results on use of the text to predict/categorize users' survey response labels - and on the fairness of these models. We also discuss the important implications of our work and resulting testbed for future NLP research on psychometrics and fairness.



References used
https://aclanthology.org/
rate research

Read More

This tutorial surveys the latest technical progress of syntactic parsing and the role of syntax in end-to-end natural language processing (NLP) tasks, in which semantic role labeling (SRL) and machine translation (MT) are the representative NLP tasks that have always been beneficial from informative syntactic clues since a long time ago, though the advance from end-to-end deep learning models shows new results. In this tutorial, we will first introduce the background and the latest progress of syntactic parsing and SRL/NMT. Then, we will summarize the key evidence about the syntactic impacts over these two concerning tasks, and explore the behind reasons from both computational and linguistic backgrounds.
It is generally agreed upon in the natural language processing (NLP) community that ethics should be integrated into any curriculum. Being aware of and understanding the relevant core concepts is a prerequisite for following and participating in the discourse on ethical NLP. We here present ready-made teaching material in the form of slides and practical exercises on ethical issues in NLP, which is primarily intended to be integrated into introductory NLP or computational linguistics courses. By making this material freely available, we aim at lowering the threshold to adding ethics to the curriculum. We hope that increased awareness will enable students to identify potentially unethical behavior.
Despite its proven efficiency in other fields, data augmentation is less popular in the context of natural language processing (NLP) due to its complexity and limited results. A recent study (Longpre et al., 2020) showed for example that task-agnosti c data augmentations fail to consistently boost the performance of pretrained transformers even in low data regimes. In this paper, we investigate whether data-driven augmentation scheduling and the integration of a wider set of transformations can lead to improved performance where fixed and limited policies were unsuccessful. Our results suggest that, while this approach can help the training process in some settings, the improvements are unsubstantial. This negative result is meant to help researchers better understand the limitations of data augmentation for NLP.
There are thousands of papers about natural language processing and computational linguistics, but very few textbooks. I describe the motivation and process for writing a college textbook on natural language processing, and offer advice and encouragement for readers who may be interested in writing a textbook of their own.
We propose an approach to automatically test for originality in generation tasks where no standard automatic measures exist. Our proposal addresses original uses of language, not necessarily original ideas. We provide an algorithm for our approach an d a run-time analysis. The algorithm, which finds all of the original fragments in a ground-truth corpus and can reveal whether a generated fragment copies an original without attribution, has a run-time complexity of theta(nlogn) where n is the number of sentences in the ground truth.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا