Do you want to publish a course? Click here

Sentence Bottleneck Autoencoders from Transformer Language Models

الجملة bottleneck autoNcoders من نماذج لغة المحول

302   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Representation learning for text via pretraining a language model on a large corpus has become a standard starting point for building NLP systems. This approach stands in contrast to autoencoders, also trained on raw text, but with the objective of learning to encode each input as a vector that allows full reconstruction. Autoencoders are attractive because of their latent space structure and generative properties. We therefore explore the construction of a sentence-level autoencoder from a pretrained, frozen transformer language model. We adapt the masked language modeling objective as a generative, denoising one, while only training a sentence bottleneck and a single-layer modified transformer decoder. We demonstrate that the sentence representations discovered by our model achieve better quality than previous methods that extract representations from pretrained transformers on text similarity tasks, style transfer (an example of controlled generation), and single-sentence classification tasks in the GLUE benchmark, while using fewer parameters than large pretrained models.



References used
https://aclanthology.org/
rate research

Read More

We probe pre-trained transformer language models for bridging inference. We first investigate individual attention heads in BERT and observe that attention heads at higher layers prominently focus on bridging relations in-comparison with the lower an d middle layers, also, few specific attention heads concentrate consistently on bridging. More importantly, we consider language models as a whole in our second approach where bridging anaphora resolution is formulated as a masked token prediction task (Of-Cloze test). Our formulation produces optimistic results without any fine-tuning, which indicates that pre-trained language models substantially capture bridging inference. Our further investigation shows that the distance between anaphor-antecedent and the context provided to language models play an important role in the inference.
Training large language models can consume a large amount of energy. We hypothesize that the language model's configuration impacts its energy consumption, and that there is room for power consumption optimisation in modern large language models. To investigate these claims, we introduce a power consumption factor to the objective function, and explore the range of models and hyperparameter configurations that affect power. We identify multiple configuration factors that can reduce power consumption during language model training while retaining model quality.
The success of language models based on the Transformer architecture appears to be inconsistent with observed anisotropic properties of representations learned by such models. We resolve this by showing, contrary to previous studies, that the represe ntations do not occupy a narrow cone, but rather drift in common directions. At any training step, all of the embeddings except for the ground-truth target embedding are updated with gradient in the same direction. Compounded over the training set, the embeddings drift and share common components, manifested in their shape in all the models we have empirically tested. Our experiments show that isotropy can be restored using a simple transformation.
Sentence extractive summarization shortens a document by selecting sentences for a summary while preserving its important contents. However, constructing a coherent and informative summary is difficult using a pre-trained BERT-based encoder since it is not explicitly trained for representing the information of sentences in a document. We propose a nested tree-based extractive summarization model on RoBERTa (NeRoBERTa), where nested tree structures consist of syntactic and discourse trees in a given document. Experimental results on the CNN/DailyMail dataset showed that NeRoBERTa outperforms baseline models in ROUGE. Human evaluation results also showed that NeRoBERTa achieves significantly better scores than the baselines in terms of coherence and yields comparable scores to the state-of-the-art models.
Abstract We present a language model that combines a large parametric neural network (i.e., a transformer) with a non-parametric episodic memory component in an integrated architecture. Our model uses extended short-term context by caching local hidd en states---similar to transformer-XL---and global long-term memory by retrieving a set of nearest neighbor tokens at each timestep. We design a gating function to adaptively combine multiple information sources to make a prediction. This mechanism allows the model to use either local context, short-term memory, or long-term memory (or any combination of them) on an ad hoc basis depending on the context. Experiments on word-based and character-based language modeling datasets demonstrate the efficacy of our proposed method compared to strong baselines.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا