Do you want to publish a course? Click here

Multi-task Learning to Enable Location Mention Identification in the Early Hours of a Crisis Event

التعلم متعدد المهام لتمكين تحديد الموقع تحديد الهوية في الساعات الأولى من حدث الأزمات

456   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Training a robust and reliable deep learning model requires a large amount of data. In the crisis domain, building deep learning models to identify actionable information from the huge influx of data posted by eyewitnesses of crisis events on social media, in a time-critical manner, is central for fast response and relief operations. However, building a large, annotated dataset to train deep learning models is not always feasible in a crisis situation. In this paper, we investigate a multi-task learning approach to concurrently leverage available annotated data for several related tasks from the crisis domain to improve the performance on a main task with limited annotated data. Specifically, we focus on using multi-task learning to improve the performance on the task of identifying location mentions in crisis tweets.



References used
https://aclanthology.org/
rate research

Read More

We propose a neural event coreference model in which event coreference is jointly trained with five tasks: trigger detection, entity coreference, anaphoricity determination, realis detection, and argument extraction. To guide the learning of this com plex model, we incorporate cross-task consistency constraints into the learning process as soft constraints via designing penalty functions. In addition, we propose the novel idea of viewing entity coreference and event coreference as a single coreference task, which we believe is a step towards a unified model of coreference resolution. The resulting model achieves state-of-the-art results on the KBP 2017 event coreference dataset.
This paper presents our contribution to the Social Media Mining for Health Applications Shared Task 2021. We addressed all the three subtasks of Task 1: Subtask A (classification of tweets containing adverse effects), Subtask B (extraction of text sp ans containing adverse effects) and Subtask C (adverse effects resolution). We explored various pre-trained transformer-based language models and we focused on a multi-task training architecture. For the first subtask, we also applied adversarial augmentation techniques and we formed model ensembles in order to improve the robustness of the prediction. Our system ranked first at Subtask B with 0.51 F1 score, 0.514 precision and 0.514 recall. For Subtask A we obtained 0.44 F1 score, 0.49 precision and 0.39 recall and for Subtask C we obtained 0.16 F1 score with 0.16 precision and 0.17 recall.
Large-scale multi-modal classification aim to distinguish between different multi-modal data, and it has drawn dramatically attentions since last decade. In this paper, we propose a multi-task learning-based framework for the multimodal classificatio n task, which consists of two branches: multi-modal autoencoder branch and attention-based multi-modal modeling branch. Multi-modal autoencoder can receive multi-modal features and obtain the interactive information which called multi-modal encoder feature, and use this feature to reconstitute all the input data. Besides, multi-modal encoder feature can be used to enrich the raw dataset, and improve the performance of downstream tasks (such as classification task). As for attention-based multimodal modeling branch, we first employ attention mechanism to make the model focused on important features, then we use the multi-modal encoder feature to enrich the input information, achieve a better performance. We conduct extensive experiments on different dataset, the results demonstrate the effectiveness of proposed framework.
Dialect and standard language identification are crucial tasks for many Arabic natural language processing applications. In this paper, we present our deep learning-based system, submitted to the second NADI shared task for country-level and province -level identification of Modern Standard Arabic (MSA) and Dialectal Arabic (DA). The system is based on an end-to-end deep Multi-Task Learning (MTL) model to tackle both country-level and province-level MSA/DA identification. The latter MTL model consists of a shared Bidirectional Encoder Representation Transformers (BERT) encoder, two task-specific attention layers, and two classifiers. Our key idea is to leverage both the task-discriminative and the inter-task shared features for country and province MSA/DA identification. The obtained results show that our MTL model outperforms single-task models on most subtasks.
We present CoTexT, a pre-trained, transformer-based encoder-decoder model that learns the representative context between natural language (NL) and programming language (PL). Using self-supervision, CoTexT is pre-trained on large programming language corpora to learn a general understanding of language and code. CoTexT supports downstream NL-PL tasks such as code summarizing/documentation, code generation, defect detection, and code debugging. We train CoTexT on different combinations of available PL corpus including both bimodal'' and unimodal'' data. Here, bimodal data is the combination of text and corresponding code snippets, whereas unimodal data is merely code snippets. We first evaluate CoTexT with multi-task learning: we perform Code Summarization on 6 different programming languages and Code Refinement on both small and medium size featured in the CodeXGLUE dataset. We further conduct extensive experiments to investigate CoTexT on other tasks within the CodeXGlue dataset, including Code Generation and Defect Detection. We consistently achieve SOTA results in these tasks, demonstrating the versatility of our models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا