يعد معالجة عدم التطابق بين الأوصاف اللغوية الطبيعية واستعلامات SQL المقابلة تحديا رئيسيا للترجمة النصية إلى SQL. لسد هذه الفجوة، نقترح تمثيل SQL الوسيط (IR) يسمى SQL الطبيعية (Natsql). على وجه التحديد، يحافظ NATSQL على الوظائف الأساسية ل SQL، في حين أنه يبسط الاستفسارات على النحو التالي: (1) الاستغناء عن المشغلين والكلمات الرئيسية مثل المجموعة من قبل المجموعة، بعد، من أجل الانضمام، والتي عادة ما تكون من الصعب العثور على نظرائهم في أوصاف النص؛ (2) إزالة الحاجة إلى السدود المتداخلة وتعيين المشغلين؛ (3) جعل المخطط يربط أسهل عن طريق تقليل العدد المطلوب من عناصر المخطط. على العنكبوت، وهو معيار نصي To-SQL الصعب يحتوي على استفسارات SQL معقدة ومتداخلة، نوضح أن NATSQL تفوق irs غيرها من مصلحة الضرائب الأخرى، وتحسين أداء العديد من نماذج Sota السابقة. علاوة على ذلك، بالنسبة للنماذج الحالية التي لا تدعم جيل SQL القابل للتنفيذ، يمكنك استخدامها NATSQL بسهولة من إنشاء استعلامات SQL القابلة للتنفيذ، وتحقق دقة تنفيذ الحالة الجديدة من بين الفن.
Addressing the mismatch between natural language descriptions and the corresponding SQL queries is a key challenge for text-to-SQL translation. To bridge this gap, we propose an SQL intermediate representation (IR) called Natural SQL (NatSQL). Specifically, NatSQL preserves the core functionalities of SQL, while it simplifies the queries as follows: (1) dispensing with operators and keywords such as GROUP BY, HAVING, FROM, JOIN ON, which are usually hard to find counterparts in the text descriptions; (2) removing the need of nested subqueries and set operators; and (3) making the schema linking easier by reducing the required number of schema items. On Spider, a challenging text-to-SQL benchmark that contains complex and nested SQL queries, we demonstrate that NatSQL outperforms other IRs, and significantly improves the performance of several previous SOTA models. Furthermore, for existing models that do not support executable SQL generation, NatSQL easily enables them to generate executable SQL queries, and achieves the new state-of-the-art execution accuracy.
References used
https://aclanthology.org/
Learning to capture text-table alignment is essential for tasks like text-to-SQL. A model needs to correctly recognize natural language references to columns and values and to ground them in the given database schema. In this paper, we present a nove
Recent neural text-to-SQL models can effectively translate natural language questions to corresponding SQL queries on unseen databases. Working mostly on the Spider dataset, researchers have proposed increasingly sophisticated solutions to the proble
Strong and affordable in-domain data is a desirable asset when transferring trained semantic parsers to novel domains. As previous methods for semi-automatically constructing such data cannot handle the complexity of realistic SQL queries, we propose
Counterfactuals are a valuable means for understanding decisions made by ML systems. However, the counterfactuals generated by the methods currently available for natural language text are either unrealistic or introduce imperceptible changes. We pro
It is challenging to design profitable and practical trading strategies, as stock price movements are highly stochastic, and the market is heavily influenced by chaotic data across sources like news and social media. Existing NLP approaches largely t