Do you want to publish a course? Click here

A Finer-grain Universal Dialogue Semantic Structures based Model For Abstractive Dialogue Summarization

الهياكل الدلوية الشاملة للحبوب الدلالي

247   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Although abstractive summarization models have achieved impressive results on document summarization tasks, their performance on dialogue modeling is much less satisfactory due to the crude and straight methods for dialogue encoding. To address this question, we propose a novel end-to-end Transformer-based model FinDS for abstractive dialogue summarization that leverages Finer-grain universal Dialogue semantic Structures to model dialogue and generates better summaries. Experiments on the SAMsum dataset show that FinDS outperforms various dialogue summarization approaches and achieves new state-of-the-art (SOTA) ROUGE results. Finally, we apply FinDS to a more complex scenario, showing the robustness of our model. We also release our source code.



References used
https://aclanthology.org/
rate research

Read More

AM dependency parsing is a method for neural semantic graph parsing that exploits the principle of compositionality. While AM dependency parsers have been shown to be fast and accurate across several graphbanks, they require explicit annotations of t he compositional tree structures for training. In the past, these were obtained using complex graphbank-specific heuristics written by experts. Here we show how they can instead be trained directly on the graphs with a neural latent-variable model, drastically reducing the amount and complexity of manual heuristics. We demonstrate that our model picks up on several linguistic phenomena on its own and achieves comparable accuracy to supervised training, greatly facilitating the use of AM dependency parsing for new sembanks.
ROUGE is a widely used evaluation metric in text summarization. However, it is not suitable for the evaluation of abstractive summarization systems as it relies on lexical overlap between the gold standard and the generated summaries. This limitation becomes more apparent for agglutinative languages with very large vocabularies and high type/token ratios. In this paper, we present semantic similarity models for Turkish and apply them as evaluation metrics for an abstractive summarization task. To achieve this, we translated the English STSb dataset into Turkish and presented the first semantic textual similarity dataset for Turkish as well. We showed that our best similarity models have better alignment with average human judgments compared to ROUGE in both Pearson and Spearman correlations.
Abstractive dialogue summarization suffers from a lots of factual errors, which are due to scattered salient elements in the multi-speaker information interaction process. In this work, we design a heterogeneous semantic slot graph with a slot-level mask cross-attention to enhance the slot features for more correct summarization. We also propose a slot-driven beam search algorithm in the decoding process to give priority to generating salient elements in a limited length by filling-in-the-blanks''. Besides, an adversarial contrastive learning assisting the training process is introduced to alleviate the exposure bias. Experimental performance on different types of factual errors shows the effectiveness of our methods and human evaluation further verifies the results..
The amount of information available online can be overwhelming for users to digest, specially when dealing with other users' comments when making a decision about buying a product or service. In this context, opinion summarization systems are of grea t value, extracting important information from the texts and presenting them to the user in a more understandable manner. It is also known that the usage of semantic representations can benefit the quality of the generated summaries. This paper aims at developing opinion summarization methods based on Abstract Meaning Representation of texts in the Brazilian Portuguese language. Four different methods have been investigated, alongside some literature approaches. The results show that a Machine Learning-based method produced summaries of higher quality, outperforming other literature techniques on manually constructed semantic graphs. We also show that using parsed graphs over manually annotated ones harmed the output. Finally, an analysis of how important different types of information are for the summarization process suggests that using Sentiment Analysis features did not improve summary quality.
Unlike well-structured text, such as news reports and encyclopedia articles, dialogue content often comes from two or more interlocutors, exchanging information with each other. In such a scenario, the topic of a conversation can vary upon progressio n and the key information for a certain topic is often scattered across multiple utterances of different speakers, which poses challenges to abstractly summarize dialogues. To capture the various topic information of a conversation and outline salient facts for the captured topics, this work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives, which are expected to implicitly model the topic change and handle information scattering challenges for the dialogue summarization task. The proposed contrastive objectives are framed as auxiliary tasks for the primary dialogue summarization task, united via an alternative parameter updating strategy. Extensive experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines and achieves new state-of-the-art performance. The code and trained models are publicly available via .

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا