Do you want to publish a course? Click here

R2-D2: A Modular Baseline for Open-Domain Question Answering

R2-D2: خط الأساس المعياري للسؤال المفتوح

188   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This work presents a novel four-stage open-domain QA pipeline R2-D2 (Rank twice, reaD twice). The pipeline is composed of a retriever, passage reranker, extractive reader, generative reader and a mechanism that aggregates the final prediction from all system's components. We demonstrate its strength across three open-domain QA datasets: NaturalQuestions, TriviaQA and EfficientQA, surpassing state-of-the-art on the first two. Our analysis demonstrates that: (i) combining extractive and generative reader yields absolute improvements up to 5 exact match and it is at least twice as effective as the posterior averaging ensemble of the same models with different parameters, (ii) the extractive reader with fewer parameters can match the performance of the generative reader on extractive QA datasets.



References used
https://aclanthology.org/
rate research

Read More

Numerical reasoning skills are essential for complex question answering (CQA) over text. It requires opertaions including counting, comparison, addition and subtraction. A successful approach to CQA on text, Neural Module Networks (NMNs), follows the programmer-interpreter paradigm and leverages specialised modules to perform compositional reasoning. However, the NMNs framework does not consider the relationship between numbers and entities in both questions and paragraphs. We propose effective techniques to improve NMNs' numerical reasoning capabilities by making the interpreter question-aware and capturing the relationship between entities and numbers. On the same subset of the DROP dataset for CQA on text, experimental results show that our additions outperform the original NMNs by 3.0 points for the overall F1 score.
Dense neural text retrieval has achieved promising results on open-domain Question Answering (QA), where latent representations of questions and passages are exploited for maximum inner product search in the retrieval process. However, current dense retrievers require splitting documents into short passages that usually contain local, partial and sometimes biased context, and highly depend on the splitting process. As a consequence, it may yield inaccurate and misleading hidden representations, thus deteriorating the final retrieval result. In this work, we propose Dense Hierarchical Retrieval (DHR), a hierarchical framework which can generate accurate dense representations of passages by utilizing both macroscopic semantics in the document and microscopic semantics specific to each passage. Specifically, a document-level retriever first identifies relevant documents, among which relevant passages are then retrieved by a passage-level retriever. The ranking of the retrieved passages will be further calibrated by examining the document-level relevance. In addition, hierarchical title structure and two negative sampling strategies (i.e., In-Doc and In-Sec negatives) are investigated. We apply DHR to large-scale open-domain QA datasets. DHR significantly outperforms the original dense passage retriever, and helps an end-to-end QA system outperform the strong baselines on multiple open-domain QA benchmarks.
Open-domain question answering aims at locating the answers to user-generated questions in massive collections of documents. Retriever-readers and knowledge graph approaches are two big families of solutions to this task. A retriever-reader first app lies information retrieval techniques to locate a few passages that are likely to be relevant, and then feeds the retrieved text to a neural network reader to extract the answer. Alternatively, knowledge graphs can be constructed and queried to answer users' questions. We propose an algorithm with a novel reader-retriever design that differs from both families. Our reader-retriever first uses an offline reader to read the corpus and generate collections of all answerable questions associated with their answers, and then uses an online retriever to respond to user queries by searching the pre-constructed question spaces for answers that are most likely to be asked in the given way. We further combine one retriever-reader and two reader-retrievers into a hybrid model called R6 for the best performance. Experiments with two large-scale public datasets show that R6 achieves state-of-the-art accuracy.
We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web page s (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement.
In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for s emantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا