Do you want to publish a course? Click here

Learning Hard Retrieval Decoder Attention for Transformers

تعلم رموز فك التراجع الصعب الانتباه للمحولات

239   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The Transformer translation model is based on the multi-head attention mechanism, which can be parallelized easily. The multi-head attention network performs the scaled dot-product attention function in parallel, empowering the model by jointly attending to information from different representation subspaces at different positions. In this paper, we present an approach to learning a hard retrieval attention where an attention head only attends to one token in the sentence rather than all tokens. The matrix multiplication between attention probabilities and the value sequence in the standard scaled dot-product attention can thus be replaced by a simple and efficient retrieval operation. We show that our hard retrieval attention mechanism is 1.43 times faster in decoding, while preserving translation quality on a wide range of machine translation tasks when used in the decoder self- and cross-attention networks.



References used
https://aclanthology.org/
rate research

Read More

Self-supervised learning has recently attracted considerable attention in the NLP community for its ability to learn discriminative features using a contrastive objective. This paper investigates whether contrastive learning can be extended to Transf omer attention to tackling the Winograd Schema Challenge. To this end, we propose a novel self-supervised framework, leveraging a contrastive loss directly at the level of self-attention. Experimental analysis of our attention-based models on multiple datasets demonstrates superior commonsense reasoning capabilities. The proposed approach outperforms all comparable unsupervised approaches while occasionally surpassing supervised ones.
Ever since neural models were adopted in data-to-text language generation, they have invariably been reliant on extrinsic components to improve their semantic accuracy, because the models normally do not exhibit the ability to generate text that reli ably mentions all of the information provided in the input. In this paper, we propose a novel decoding method that extracts interpretable information from encoder-decoder models' cross-attention, and uses it to infer which attributes are mentioned in the generated text, which is subsequently used to rescore beam hypotheses. Using this decoding method with T5 and BART, we show on three datasets its ability to dramatically reduce semantic errors in the generated outputs, while maintaining their state-of-the-art quality.
In this work, we conduct a comprehensive investigation on one of the centerpieces of modern machine translation systems: the encoder-decoder attention mechanism. Motivated by the concept of first-order alignments, we extend the (cross-)attention mech anism by a recurrent connection, allowing direct access to previous attention/alignment decisions. We propose several ways to include such a recurrency into the attention mechanism. Verifying their performance across different translation tasks we conclude that these extensions and dependencies are not beneficial for the translation performance of the Transformer architecture.
Natural question generation (QG) aims to generate questions from a passage, and generated questions are answered from the passage. Most models with state-of-the-art performance model the previously generated text at each decoding step. However, (1) t hey ignore the rich structure information that is hidden in the previously generated text. (2) they ignore the impact of copied words on the passage. We perceive that information in previously generated words serves as auxiliary information in subsequent generation. To address these problems, we design the Iterative Graph Network-based Decoder (IGND) to model the previous generation using a Graph Neural Network at each decoding step. Moreover, our graph model captures dependency relations in the passage that boost the generation. Experimental results demonstrate that our model outperforms the state-of-the-art models with sentence-level QG tasks on SQuAD and MARCO datasets.
Transformer models are permutation equivariant. To supply the order and type information of the input tokens, position and segment embeddings are usually added to the input. Recent works proposed variations of positional encodings with relative posit ion encodings achieving better performance. Our analysis shows that the gain actually comes from moving positional information to attention layer from the input. Motivated by this, we introduce Decoupled Positional Attention for Transformers (DIET), a simple yet effective mechanism to encode position and segment information into the Transformer models. The proposed method has faster training and inference time, while achieving competitive performance on GLUE, XTREME and WMT benchmarks. We further generalize our method to long-range transformers and show performance gain.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا