Do you want to publish a course? Click here

Structure-to-Text Generation with Self-Training, Acceptability Classifiers and Context-Conditioning for the GEM Shared Task

توليد الهيكل إلى النص مع التدريب الذاتي، والتصوير القابل للقبول وتكييف السياق للمهمة المشتركة GEM

327   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We explore the use of self-training and acceptability classifiers with pre-trained models for natural language generation in structure-to-text settings using three GEM datasets (E2E, WebNLG-en, Schema-Guided Dialog). With the Schema-Guided Dialog dataset, we also experiment with including multiple turns of context in the input. We find that self-training with reconstruction matching along with acceptability classifier filtering can improve semantic correctness, though gains are limited in the full-data setting. With context-conditioning, we find that including multiple turns in the context encourages the model to align with the user's word and phrasing choices as well as to generate more self-consistent responses. In future versions of the GEM challenge, we encourage the inclusion of few-shot tracks to encourage research on data efficiency.

References used
https://aclanthology.org/
rate research

Read More

The Shared Task on Hateful Memes is a challenge that aims at the detection of hateful content in memes by inviting the implementation of systems that understand memes, potentially by combining image and textual information. The challenge consists of three detection tasks: hate, protected category and attack type. The first is a binary classification task, while the other two are multi-label classification tasks. Our participation included a text-based BERT baseline (TxtBERT), the same but adding information from the image (ImgBERT), and neural retrieval approaches. We also experimented with retrieval augmented classification models. We found that an ensemble of TxtBERT and ImgBERT achieves the best performance in terms of ROC AUC score in two out of the three tasks on our development set.
Abstract Recent approaches to data-to-text generation have adopted the very successful encoder-decoder architecture or variants thereof. These models generate text that is fluent (but often imprecise) and perform quite poorly at selecting appropriate content and ordering it coherently. To overcome some of these issues, we propose a neural model with a macro planning stage followed by a generation stage reminiscent of traditional methods which embrace separate modules for planning and surface realization. Macro plans represent high level organization of important content such as entities, events, and their interactions; they are learned from data and given as input to the generator. Extensive experiments on two data-to-text benchmarks (RotoWire and MLB) show that our approach outperforms competitive baselines in terms of automatic and human evaluation.
State-of-the-art deep neural networks require large-scale labeled training data that is often expensive to obtain or not available for many tasks. Weak supervision in the form of domain-specific rules has been shown to be useful in such settings to a utomatically generate weakly labeled training data. However, learning with weak rules is challenging due to their inherent heuristic and noisy nature. An additional challenge is rule coverage and overlap, where prior work on weak supervision only considers instances that are covered by weak rules, thus leaving valuable unlabeled data behind. In this work, we develop a weak supervision framework (ASTRA) that leverages all the available data for a given task. To this end, we leverage task-specific unlabeled data through self-training with a model (student) that considers contextualized representations and predicts pseudo-labels for instances that may not be covered by weak rules. We further develop a rule attention network (teacher) that learns how to aggregate student pseudo-labels with weak rule labels, conditioned on their fidelity and the underlying context of an instance. Finally, we construct a semi-supervised learning objective for end-to-end training with unlabeled data, domain-specific rules, and a small amount of labeled data. Extensive experiments on six benchmark datasets for text classification demonstrate the effectiveness of our approach with significant improvements over state-of-the-art baselines.
Despite their recent successes in tackling many NLP tasks, large-scale pre-trained language models do not perform as well in few-shot settings where only a handful of training examples are available. To address this shortcoming, we propose STraTA, wh ich stands for Self-Training with Task Augmentation, an approach that builds on two key ideas for effective leverage of unlabeled data. First, STraTA uses task augmentation, a novel technique that synthesizes a large amount of data for auxiliary-task fine-tuning from target-task unlabeled texts. Second, STraTA performs self-training by further fine-tuning the strong base model created by task augmentation on a broad distribution of pseudo-labeled data. Our experiments demonstrate that STraTA can substantially improve sample efficiency across 12 few-shot benchmarks. Remarkably, on the SST-2 sentiment dataset, STraTA, with only 8 training examples per class, achieves comparable results to standard fine-tuning with 67K training examples. Our analyses reveal that task augmentation and self-training are both complementary and independently effective.
This paper studies the keyphrase generation (KG) task for scenarios where structure plays an important role. For example, a scientific publication consists of a short title and a long body, where the title can be used for de-emphasizing unimportant d etails in the body. Similarly, for short social media posts (, tweets), scarce context can be augmented from titles, though often missing. Our contribution is generating/augmenting structure then injecting these information in the encoding, using existing keyphrases of other documents, complementing missing/incomplete titles. We propose novel structure-augmented document encoding approaches that consist of the following two phases: The first phase, generating structure, extends the given document with related but absent keyphrases, augmenting missing context. The second phase, encoding structure, builds a graph of keyphrases and the given document to obtain the structure-aware representation of the augmented text. Our empirical results validate that our proposed structure augmentation and augmentation-aware encoding/decoding can improve KG for both scenarios, outperforming the state-of-the-art.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا