Do you want to publish a course? Click here

Shared Task on Feedback Comment Generation for Language Learners

مهمة مشتركة بشأن جيل تعليق التعليقات لمتعلمي اللغة

256   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we propose a generation challenge called Feedback comment generation for language learners. It is a task where given a text and a span, a system generates, for the span, an explanatory note that helps the writer (language learner) improve their writing skills. The motivations for this challenge are: (i) practically, it will be beneficial for both language learners and teachers if a computer-assisted language learning system can provide feedback comments just as human teachers do; (ii) theoretically, feedback comment generation for language learners has a mixed aspect of other generation tasks together with its unique features and it will be interesting to explore what kind of generation technique is effective against what kind of writing rule. To this end, we have created a dataset and developed baseline systems to estimate baseline performance. With these preparations, we propose a generation challenge of feedback comment generation.



References used
https://aclanthology.org/
rate research

Read More

We describe our submitted system to the 2021 Shared Task on Sarcasm and Sentiment Detection in Arabic (Abu Farha et al., 2021). We tackled both subtasks, namely Sarcasm Detection (Subtask 1) and Sentiment Analysis (Subtask 2). We used state-of-the-ar t pretrained contextualized text representation models and fine-tuned them according to the downstream task in hand. As a first approach, we used Google's multilingual BERT and then other Arabic variants: AraBERT, ARBERT and MARBERT. The results found show that MARBERT outperforms all of the previously mentioned models overall, either on Subtask 1 or Subtask 2.
Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for soci al media on which information is shared in a multitude of ways, including diverse languages and code-switching. Since the seminal work of Han and Baldwin (2011) a decade ago, lexical normalization has attracted attention in English and multiple other languages. However, there exists a lack of a common benchmark for comparison of systems across languages with a homogeneous data and evaluation setup. The MultiLexNorm shared task sets out to fill this gap. We provide the largest publicly available multilingual lexical normalization benchmark including 13 language variants. We propose a homogenized evaluation setup with both intrinsic and extrinsic evaluation. As extrinsic evaluation, we use dependency parsing and part-of-speech tagging with adapted evaluation metrics (a-LAS, a-UAS, and a-POS) to account for alignment discrepancies. The shared task hosted at W-NUT 2021 attracted 9 participants and 18 submissions. The results show that neural normalization systems outperform the previous state-of-the-art system by a large margin. Downstream parsing and part-of-speech tagging performance is positively affected but to varying degrees, with improvements of up to 1.72 a-LAS, 0.85 a-UAS, and 1.54 a-POS for the winning system.
This paper presents the Bering Lab's submission to the shared tasks of the 8th Workshop on Asian Translation (WAT 2021) on JPC2 and NICT-SAP. We participated in all tasks on JPC2 and IT domain tasks on NICT-SAP. Our approach for all tasks mainly focu sed on building NMT systems in domain-specific corpora. We crawled patent document pairs for English-Japanese, Chinese-Japanese, and Korean-Japanese. After cleaning noisy data, we built parallel corpus by aligning those sentences with the sentence-level similarity scores. Also, for SAP test data, we collected the OPUS dataset including three IT domain corpora. We then trained transformer on the collected dataset. Our submission ranked 1st in eight out of fourteen tasks, achieving up to an improvement of 2.87 for JPC2 and 8.79 for NICT-SAP in BLEU score .
A text retrieval system for language learning returns reading materials at the appropriate difficulty level for the user. The system typically maintains a learner model on the user's vocabulary knowledge, and identifies texts that best fit the model. As the user's language proficiency increases, model updates are necessary to retrieve texts with the corresponding lexical complexity. We investigate an open learner model that allows user modification of its content, and evaluate its effectiveness with respect to the amount of user update effort. We compare this model with the graded approach, in which the system returns texts at the optimal grade. When the user makes at least half of the expected updates to the open learner model, simulation results show that it outperforms the graded approach in retrieving texts that fit user preference for new-word density.
In this paper, we describe our submissions for the Similar Language Translation Shared Task 2021. We built 3 systems in each direction for the Tamil ⇐⇒ Telugu language pair. This paper outlines experiments with various tokenization schemes to train statistical models. We also report the configuration of the submitted systems and results produced by them.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا