Do you want to publish a course? Click here

Time-Aware Ancient Chinese Text Translation and Inference

تدرك الوقت الترجمة الصينية القديمة والاستدلال

392   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we aim to address the challenges surrounding the translation of ancient Chinese text: (1) The linguistic gap due to the difference in eras results in translations that are poor in quality, and (2) most translations are missing the contextual information that is often very crucial to understanding the text. To this end, we improve upon past translation techniques by proposing the following: We reframe the task as a multi-label prediction task where the model predicts both the translation and its particular era. We observe that this helps to bridge the linguistic gap as chronological context is also used as auxiliary information. We validate our framework on a parallel corpus annotated with chronology information and show experimentally its efficacy in producing quality translation outputs. We release both the code and the data for future research.



References used
https://aclanthology.org/
rate research

Read More

How to generate summaries of different styles without requiring corpora in the target styles, or training separate models? We present two novel methods that can be deployed during summary decoding on any pre-trained Transformer-based summarization mo del. (1) Decoder state adjustment instantly modifies decoder final states with externally trained style scorers, to iteratively refine the output against a target style. (2) Word unit prediction constrains the word usage to impose strong lexical control during generation. In experiments of summarizing with simplicity control, automatic evaluation and human judges both find our models producing outputs in simpler languages while still informative. We also generate news headlines with various ideological leanings, which can be distinguished by humans with a reasonable probability.
Adaptive Machine Translation purports to dynamically include user feedback to improve translation quality. In a post-editing scenario, user corrections of machine translation output are thus continuously incorporated into translation models, reducing or eliminating repetitive error editing and increasing the usefulness of automated translation. In neural machine translation, this goal may be achieved via online learning approaches, where network parameters are updated based on each new sample. This type of adaptation typically requires higher learning rates, which can affect the quality of the models over time. Alternatively, less aggressive online learning setups may preserve model stability, at the cost of reduced adaptation to user-generated corrections. In this work, we evaluate different online learning configurations over time, measuring their impact on user-generated samples, as well as separate in-domain and out-of-domain datasets. Results in two different domains indicate that mixed approaches combining online learning with periodic batch fine-tuning might be needed to balance the benefits of online learning with model stability.
We study the task of learning and evaluating Chinese idiom embeddings. We first construct a new evaluation dataset that contains idiom synonyms and antonyms. Observing that existing Chinese word embedding methods may not be suitable for learning idio m embeddings, we further present a BERT-based method that directly learns embedding vectors for individual idioms. We empirically compare representative existing methods and our method. We find that our method substantially outperforms existing methods on the evaluation dataset we have constructed.
Gender bias in word embeddings gradually becomes a vivid research field in recent years. Most studies in this field aim at measurement and debiasing methods with English as the target language. This paper investigates gender bias in static word embed dings from a unique perspective, Chinese adjectives. By training word representations with different models, the gender bias behind the vectors of adjectives is assessed. Through a comparison between the produced results and a human scored data set, we demonstrate how gender bias encoded in word embeddings differentiates from people's attitudes.
Although exposure bias has been widely studied in some NLP tasks, it faces its unique challenges in dialogue response generation, the representative one-to-various generation scenario.In real human dialogue, there are many appropriate responses for t he same context, not only with different expressions, but also with different topics. Therefore, due to the much bigger gap between various ground-truth responses and the generated synthetic response, exposure bias is more challenging in dialogue generation task.What's more, as MLE encourages the model to only learn the common words among different ground-truth responses, but ignores the interesting and specific parts, exposure bias may further lead to the common response generation problem, such as I don't know'' and HaHa?'' In this paper, we propose a novel adaptive switching mechanism, which learns to automatically transit between ground-truth learning and generated learning regarding the word-level matching score, such as the cosine similarity. Experimental results on both Chinese STC dataset and English Reddit dataset, show that our adaptive method achieves a significant improvement in terms of metric-based evaluation and human evaluation, as compared with the state-of-the-art exposure bias approaches. Further analysis on NMT task also shows that our model can achieve a significant improvement.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا