Do you want to publish a course? Click here

Semantic Aligned Multi-modal Transformer for Vision-LanguageUnderstanding: A Preliminary Study on Visual QA

محولات الدلالة المحاذاة متعددة الوسائط للرؤية - اللغت: دراسة أولية على Visual QA

387   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Recent vision-language understanding approaches adopt a multi-modal transformer pre-training and finetuning paradigm. Prior work learns representations of text tokens and visual features with cross-attention mechanisms and captures the alignment solely based on indirect signals. In this work, we propose to enhance the alignment mechanism by incorporating image scene graph structures as the bridge between the two modalities, and learning with new contrastive objectives. In our preliminary study on the challenging compositional visual question answering task, we show the proposed approach achieves improved results, demonstrating potentials to enhance vision-language understanding.



References used
https://aclanthology.org/
rate research

Read More

The problem of interpretation of knowledge learned by multi-head self-attention in transformers has been one of the central questions in NLP. However, a lot of work mainly focused on models trained for uni-modal tasks, e.g. machine translation. In th is paper, we examine masked self-attention in a multi-modal transformer trained for the task of image captioning. In particular, we test whether the multi-modality of the task objective affects the learned attention patterns. Our visualisations of masked self-attention demonstrate that (i) it can learn general linguistic knowledge of the textual input, and (ii) its attention patterns incorporate artefacts from visual modality even though it has never accessed it directly. We compare our transformer's attention patterns with masked attention in distilgpt-2 tested for uni-modal text generation of image captions. Based on the maps of extracted attention weights, we argue that masked self-attention in image captioning transformer seems to be enhanced with semantic knowledge from images, exemplifying joint language-and-vision information in its attention patterns.
Vision language navigation is the task that requires an agent to navigate through a 3D environment based on natural language instructions. One key challenge in this task is to ground instructions with the current visual information that the agent per ceives. Most of the existing work employs soft attention over individual words to locate the instruction required for the next action. However, different words have different functions in a sentence (e.g., modifiers convey attributes, verbs convey actions). Syntax information like dependencies and phrase structures can aid the agent to locate important parts of the instruction. Hence, in this paper, we propose a navigation agent that utilizes syntax information derived from a dependency tree to enhance alignment between the instruction and the current visual scenes. Empirically, our agent outperforms the baseline model that does not use syntax information on the Room-to-Room dataset, especially in the unseen environment. Besides, our agent achieves the new state-of-the-art on Room-Across-Room dataset, which contains instructions in 3 languages (English, Hindi, and Telugu). We also show that our agent is better at aligning instructions with the current visual information via qualitative visualizations.
In the Vision-and-Language Navigation (VLN) task an embodied agent navigates a 3D environment, following natural language instructions. A challenge in this task is how to handle off the path' scenarios where an agent veers from a reference path. Prio r work supervises the agent with actions based on the shortest path from the agent's location to the goal, but such goal-oriented supervision is often not in alignment with the instruction. Furthermore, the evaluation metrics employed by prior work do not measure how much of a language instruction the agent is able to follow. In this work, we propose a simple and effective language-aligned supervision scheme, and a new metric that measures the number of sub-instructions the agent has completed during navigation.
Multi-modal machine translation (MMT) aims at improving translation performance by incorporating visual information. Most of the studies leverage the visual information through integrating the global image features as auxiliary input or decoding by a ttending to relevant local regions of the image. However, this kind of usage of visual information makes it difficult to figure out how the visual modality helps and why it works. Inspired by the findings of (CITATION) that entities are most informative in the image, we propose an explicit entity-level cross-modal learning approach that aims to augment the entity representation. Specifically, the approach is framed as a reconstruction task that reconstructs the original textural input from multi-modal input in which entities are replaced with visual features. Then, a multi-task framework is employed to combine the translation task and the reconstruction task to make full use of cross-modal entity representation learning. The extensive experiments demonstrate that our approach can achieve comparable or even better performance than state-of-the-art models. Furthermore, our in-depth analysis shows how visual information improves translation.
Aspect terms extraction (ATE) and aspect sentiment classification (ASC) are two fundamental and fine-grained sub-tasks in aspect-level sentiment analysis (ALSA). In the textual analysis, joint extracting both aspect terms and sentiment polarities has been drawn much attention due to the better applications than individual sub-task. However, in the multi-modal scenario, the existing studies are limited to handle each sub-task independently, which fails to model the innate connection between the above two objectives and ignores the better applications. Therefore, in this paper, we are the first to jointly perform multi-modal ATE (MATE) and multi-modal ASC (MASC), and we propose a multi-modal joint learning approach with auxiliary cross-modal relation detection for multi-modal aspect-level sentiment analysis (MALSA). Specifically, we first build an auxiliary text-image relation detection module to control the proper exploitation of visual information. Second, we adopt the hierarchical framework to bridge the multi-modal connection between MATE and MASC, as well as separately visual guiding for each sub module. Finally, we can obtain all aspect-level sentiment polarities dependent on the jointly extracted specific aspects. Extensive experiments show the effectiveness of our approach against the joint textual approaches, pipeline and collapsed multi-modal approaches.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا