Do you want to publish a course? Click here

Language Models are Few-shot Multilingual Learners

نماذج اللغة هي عدد قليل من المتعلمين متعدد اللغات

234   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

General-purpose language models have demonstrated impressive capabilities, performing on par with state-of-the-art approaches on a range of downstream natural language processing (NLP) tasks and benchmarks when inferring instructions from very few examples. Here, we evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages without any parameter updates. We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones. Finally, we find the in-context few-shot cross-lingual prediction results of language models are significantly better than random prediction, and they are competitive compared to the existing state-of-the-art cross-lingual models and translation models.



References used
https://aclanthology.org/
rate research

Read More

When scaled to hundreds of billions of parameters, pretrained language models such as GPT-3 (Brown et al., 2020) achieve remarkable few-shot performance. However, enormous amounts of compute are required for training and applying such big models, res ulting in a large carbon footprint and making it difficult for researchers and practitioners to use them. We show that performance similar to GPT-3 can be obtained with language models that are much greener'' in that their parameter count is several orders of magnitude smaller. This is achieved by converting textual inputs into cloze questions that contain a task description, combined with gradient-based optimization; exploiting unlabeled data gives further improvements. We identify key factors required for successful natural language understanding with small language models.
In this paper, we study the utilization of pre-trained language models to enable few-shotNatural Language Generation (NLG) in task-oriented dialog systems. We introduce a system consisting of iterative self-training and an extensible mini-template fr amework that textualizes the structured input data into semi-natural text to fully take advantage of pre-trained language models. We compare var-ious representations of NLG models' input and output and show that transforming the input and output to be similar to what the language model has seen before during pre-training improves the model's few-shot performance substantially. We show that neural mod-els can be trained with as few as 300 annotated examples while providing high fidelity, considerably lowering the resource requirements for standing up a new domain or language.This level of data efficiency removes the need for crowd-sourced data collection resulting in higher quality data annotated by expert linguists. In addition, model maintenance and debugging processes will improve in this few-shot setting. Finally, we explore distillation and using a caching system to satisfy latency requirements of real-world systems.
We explore the use of large pretrained language models as few-shot semantic parsers. The goal in semantic parsing is to generate a structured meaning representation given a natural language input. However, language models are trained to generate natu ral language. To bridge the gap, we use language models to paraphrase inputs into a controlled sublanguage resembling English that can be automatically mapped to a target meaning representation. Our results demonstrate that with only a small amount of data and very little code to convert into English-like representations, our blueprint for rapidly bootstrapping semantic parsers leads to surprisingly effective performance on multiple community tasks, greatly exceeding baseline methods also trained on the same limited data.
As it has been unveiled that pre-trained language models (PLMs) are to some extent capable of recognizing syntactic concepts in natural language, much effort has been made to develop a method for extracting complete (binary) parses from PLMs without training separate parsers. We improve upon this paradigm by proposing a novel chart-based method and an effective top-K ensemble technique. Moreover, we demonstrate that we can broaden the scope of application of the approach into multilingual settings. Specifically, we show that by applying our method on multilingual PLMs, it becomes possible to induce non-trivial parses for sentences from nine languages in an integrated and language-agnostic manner, attaining performance superior or comparable to that of unsupervised PCFGs. We also verify that our approach is robust to cross-lingual transfer. Finally, we provide analyses on the inner workings of our method. For instance, we discover universal attention heads which are consistently sensitive to syntactic information irrespective of the input language.
Natural Language Processing (NLP) is increasingly relying on general end-to-end systems that need to handle many different linguistic phenomena and nuances. For example, a Natural Language Inference (NLI) system has to recognize sentiment, handle num bers, perform coreference, etc. Our solutions to complex problems are still far from perfect, so it is important to create systems that can learn to correct mistakes quickly, incrementally, and with little training data. In this work, we propose a continual few-shot learning (CFL) task, in which a system is challenged with a difficult phenomenon and asked to learn to correct mistakes with only a few (10 to 15) training examples. To this end, we first create benchmarks based on previously annotated data: two NLI (ANLI and SNLI) and one sentiment analysis (IMDB) datasets. Next, we present various baselines from diverse paradigms (e.g., memory-aware synapses and Prototypical networks) and compare them on few-shot learning and continual few-shot learning setups. Our contributions are in creating a benchmark suite and evaluation protocol for continual few-shot learning on the text classification tasks, and making several interesting observations on the behavior of similarity-based methods. We hope that our work serves as a useful starting point for future work on this important topic.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا