تقترح هذه الورقة معيارا للإجابة على الأسئلة (QA) للمنطق المكاني للنص اللغوي الطبيعي الذي يحتوي على ظواهر مكانية واقعية غير مغطاة بعمل مسبق وهو أمر صعب طرازات اللغة الحديثة (LM).نقترح طريقة الإشراف البعيدة لتحسين هذه المهمة.على وجه التحديد، نقوم بتصميم قواعد النحو والتفكير لإنشاء وصفا مكاني تلقائيا للمشاهد البصرية وأزواج ضمان الجودة المقابلة.تظهر التجارب أن محاور LMS بشكل أكبر على هذه البيانات التي تم إنشاؤها تلقائيا تعمل بشكل كبير على تحسين قدرة LMS على الفهم المكاني، والذي يساعد بدوره في حل مجموعات بيانات خارجية، و Babi، و Boolq.نأمل أن يعزز هذا العمل التحقيقات في نماذج أكثر تطورا للمناسبات المكانية على النص.
This paper proposes a question-answering (QA) benchmark for spatial reasoning on natural language text which contains more realistic spatial phenomena not covered by prior work and is challenging for state-of-the-art language models (LM). We propose a distant supervision method to improve on this task. Specifically, we design grammar and reasoning rules to automatically generate a spatial description of visual scenes and corresponding QA pairs. Experiments show that further pretraining LMs on these automatically generated data significantly improves LMs' capability on spatial understanding, which in turn helps to better solve two external datasets, bAbI, and boolQ. We hope that this work can foster investigations into more sophisticated models for spatial reasoning over text.
References used
https://aclanthology.org/
Video Question Answering (VidQA) evaluation metrics have been limited to a single-word answer or selecting a phrase from a fixed set of phrases. These metrics limit the VidQA models' application scenario. In this work, we leverage semantic roles deri
Current textual question answering (QA) models achieve strong performance on in-domain test sets, but often do so by fitting surface-level patterns, so they fail to generalize to out-of-distribution settings. To make a more robust and understandable
Most of the existing Knowledge-based Question Answering (KBQA) methods first learn to map the given question to a query graph, and then convert the graph to an executable query to find the answer. The query graph is typically expanded progressively f
Multilingual question answering tasks typically assume that answers exist in the same language as the question. Yet in practice, many languages face both information scarcity---where languages have few reference articles---and information asymmetry--
Question answering (QA) is one of the most challenging and impactful tasks in natural language processing. Most research in QA, however, has focused on the open-domain or monolingual setting while most real-world applications deal with specific domai