Do you want to publish a course? Click here

SPARTQA: A Textual Question Answering Benchmark for Spatial Reasoning

سبارتا: سؤال نصي يجيب على المعيار للتفكير المكاني

547   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper proposes a question-answering (QA) benchmark for spatial reasoning on natural language text which contains more realistic spatial phenomena not covered by prior work and is challenging for state-of-the-art language models (LM). We propose a distant supervision method to improve on this task. Specifically, we design grammar and reasoning rules to automatically generate a spatial description of visual scenes and corresponding QA pairs. Experiments show that further pretraining LMs on these automatically generated data significantly improves LMs' capability on spatial understanding, which in turn helps to better solve two external datasets, bAbI, and boolQ. We hope that this work can foster investigations into more sophisticated models for spatial reasoning over text.



References used
https://aclanthology.org/
rate research

Read More

Video Question Answering (VidQA) evaluation metrics have been limited to a single-word answer or selecting a phrase from a fixed set of phrases. These metrics limit the VidQA models' application scenario. In this work, we leverage semantic roles deri ved from video descriptions to mask out certain phrases, to introduce VidQAP which poses VidQA as a fill-in-the-phrase task. To enable evaluation of answer phrases, we compute the relative improvement of the predicted answer compared to an empty string. To reduce the influence of language bias in VidQA datasets, we retrieve a video having a different answer for the same question. To facilitate research, we construct ActivityNet-SRL-QA and Charades-SRL-QA and benchmark them by extending three vision-language models. We perform extensive analysis and ablative studies to guide future work. Code and data are public.
Current textual question answering (QA) models achieve strong performance on in-domain test sets, but often do so by fitting surface-level patterns, so they fail to generalize to out-of-distribution settings. To make a more robust and understandable QA system, we model question answering as an alignment problem. We decompose both the question and context into smaller units based on off-the-shelf semantic representations (here, semantic roles), and align the question to a subgraph of the context in order to find the answer. We formulate our model as a structured SVM, with alignment scores computed via BERT, and we can train end-to-end despite using beam search for approximate inference. Our use of explicit alignments allows us to explore a set of constraints with which we can prohibit certain types of bad model behavior arising in cross-domain settings. Furthermore, by investigating differences in scores across different potential answers, we can seek to understand what particular aspects of the input lead the model to choose the answer without relying on post-hoc explanation techniques. We train our model on SQuAD v1.1 and test it on several adversarial and out-of-domain datasets. The results show that our model is more robust than the standard BERT QA model, and constraints derived from alignment scores allow us to effectively trade off coverage and accuracy.
Most of the existing Knowledge-based Question Answering (KBQA) methods first learn to map the given question to a query graph, and then convert the graph to an executable query to find the answer. The query graph is typically expanded progressively f rom the topic entity based on a sequence prediction model. In this paper, we propose a new solution to query graph generation that works in the opposite manner: we start with the entire knowledge base and gradually shrink it to the desired query graph. This approach improves both the efficiency and the accuracy of query graph generation, especially for complex multi-hop questions. Experimental results show that our method achieves state-of-the-art performance on ComplexWebQuestion (CWQ) dataset.
Multilingual question answering tasks typically assume that answers exist in the same language as the question. Yet in practice, many languages face both information scarcity---where languages have few reference articles---and information asymmetry-- -where questions reference concepts from other cultures. This work extends open-retrieval question answering to a cross-lingual setting enabling questions from one language to be answered via answer content from another language. We construct a large-scale dataset built on 40K information-seeking questions across 7 diverse non-English languages that TyDi QA could not find same-language answers for. Based on this dataset, we introduce a task framework, called Cross-lingual Open-Retrieval Question Answering (XOR QA), that consists of three new tasks involving cross-lingual document retrieval from multilingual and English resources. We establish baselines with state-of-the-art machine translation systems and cross-lingual pretrained models. Experimental results suggest that XOR QA is a challenging task that will facilitate the development of novel techniques for multilingual question answering. Our data and code are available at https://nlp.cs.washington.edu/xorqa/.
Question answering (QA) is one of the most challenging and impactful tasks in natural language processing. Most research in QA, however, has focused on the open-domain or monolingual setting while most real-world applications deal with specific domai ns or languages. In this tutorial, we attempt to bridge this gap. Firstly, we introduce standard benchmarks in multi-domain and multilingual QA. In both scenarios, we discuss state-of-the-art approaches that achieve impressive performance, ranging from zero-shot transfer learning to out-of-the-box training with open-domain QA systems. Finally, we will present open research problems that this new research agenda poses such as multi-task learning, cross-lingual transfer learning, domain adaptation and training large scale pre-trained multilingual language models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا