يمكن أن تعكس القواط التي تحدث بشكل طبيعي، مثل الإجابة على شظايا لأسئلة اللغة الطبيعية والارتباطات التشعبية على صفحات الويب، الحد من الحدس النحامي البشري فيما يتعلق بحدود الجمل الفعلية.إن توفرهم والمراسلات التقريبية لبناء الجملة يجعلهم جذابا على أنها مصادر معلومات بعيدة لتدميرها في تحليل دائم غير مخالف.لكنهم صاخبة وغير كاملة.لمعالجة هذا التحدي، نقوم بتطوير فقدان منحدري من الأقواس الجزئي في التعلم.توضح التجارب أن نماذجنا الخاضعة للإشراف على نطاق واسع تدرب على البيانات الموجودة بشكل طبيعي قوسين أكثر دقة في حث الهياكل النحوية من النظم المنافسة غير المنفصلة.على English WSJ Corpus، تحقق نماذجنا درجة F1 غير قابلة للتحقيق من 68.9 لتحليل الدوائر الانتخابية.
Naturally-occurring bracketings, such as answer fragments to natural language questions and hyperlinks on webpages, can reflect human syntactic intuition regarding phrasal boundaries. Their availability and approximate correspondence to syntax make them appealing as distant information sources to incorporate into unsupervised constituency parsing. But they are noisy and incomplete; to address this challenge, we develop a partial-brackets-aware structured ramp loss in learning. Experiments demonstrate that our distantly-supervised models trained on naturally-occurring bracketing data are more accurate in inducing syntactic structures than competing unsupervised systems. On the English WSJ corpus, our models achieve an unlabeled F1 score of 68.9 for constituency parsing.
References used
https://aclanthology.org/
We introduce AraFacts, the first large Arabic dataset of naturally occurring claims collected from 5 Arabic fact-checking websites, e.g., Fatabyyano and Misbar, and covering claims since 2016. Our dataset consists of 6,121 claims along with their fac
Existing text style transfer (TST) methods rely on style classifiers to disentangle the text's content and style attributes for text style transfer. While the style classifier plays a critical role in existing TST methods, there is no known investiga
Syntax is fundamental to our thinking about language. Failing to capture the structure of input language could lead to generalization problems and over-parametrization. In the present work, we propose a new syntax-aware language model: Syntactic Orde
Most available semantic parsing datasets, comprising of pairs of natural utterances and logical forms, were collected solely for the purpose of training and evaluation of natural language understanding systems. As a result, they do not contain any of
This tutorial surveys the latest technical progress of syntactic parsing and the role of syntax in end-to-end natural language processing (NLP) tasks, in which semantic role labeling (SRL) and machine translation (MT) are the representative NLP tasks