تعتمد معالجة شفرة المصدر بشكل كبير على الأساليب المستخدمة على نطاق واسع في معالجة اللغة الطبيعية (NLP)، ولكنها تنطوي على تفاصيل يجب مراعاتها في الاعتبار لتحقيق جودة أعلى.مثال على هذا الخصوصية هو أن دلالات متغير محددة ليس فقط باسمها ولكن أيضا من خلال السياقات التي يحدث فيها المتغير.في هذا العمل، نطور embeddings الديناميكي، وهي آلية متكررة تضبط الدلالات المستفادة للمتغير عند حصولها على مزيد من المعلومات حول دور المتغير في البرنامج.نظهر أن استخدام المدينات الديناميكية المقترحة يحسن بشكل كبير من أداء الشبكة العصبية المتكررة، في إكمال التعليمات البرمجية ومهام إصلاح الأخطاء.
Source code processing heavily relies on the methods widely used in natural language processing (NLP), but involves specifics that need to be taken into account to achieve higher quality. An example of this specificity is that the semantics of a variable is defined not only by its name but also by the contexts in which the variable occurs. In this work, we develop dynamic embeddings, a recurrent mechanism that adjusts the learned semantics of the variable when it obtains more information about the variable's role in the program. We show that using the proposed dynamic embeddings significantly improves the performance of the recurrent neural network, in code completion and bug fixing tasks.
References used
https://aclanthology.org/
It is now established that modern neural language models can be successfully trained on multiple languages simultaneously without changes to the underlying architecture, providing an easy way to adapt a variety of NLP models to low-resource languages
Modern approaches to Constituency Parsing are mono-lingual supervised approaches which require large amount of labelled data to be trained on, thus limiting their utility to only a handful of high-resource languages. To address this issue of data-spa
In computational linguistics, it has been shown that hierarchical structures make language models (LMs) more human-like. However, the previous literature has been agnostic about a parsing strategy of the hierarchical models. In this paper, we investi
Neural networks are the state-of-the-art method of machine learning for many problems in NLP. Their success in machine translation and other NLP tasks is phenomenal, but their interpretability is challenging. We want to find out how neural networks r
The encoder--decoder framework achieves state-of-the-art results in keyphrase generation (KG) tasks by predicting both present keyphrases that appear in the source document and absent keyphrases that do not. However, relying solely on the source docu