Do you want to publish a course? Click here

Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach

طراز اللغة المدرب مسبقا مسبقا مع إشراف ضعيف: نهج التدريب الذاتي المتناقض

487   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Fine-tuned pre-trained language models (LMs) have achieved enormous success in many natural language processing (NLP) tasks, but they still require excessive labeled data in the fine-tuning stage. We study the problem of fine-tuning pre-trained LMs using only weak supervision, without any labeled data. This problem is challenging because the high capacity of LMs makes them prone to overfitting the noisy labels generated by weak supervision. To address this problem, we develop a contrastive self-training framework, COSINE, to enable fine-tuning LMs with weak supervision. Underpinned by contrastive regularization and confidence-based reweighting, our framework gradually improves model fitting while effectively suppressing error propagation. Experiments on sequence, token, and sentence pair classification tasks show that our model outperforms the strongest baseline by large margins and achieves competitive performance with fully-supervised fine-tuning methods. Our implementation is available on https://github.com/yueyu1030/COSINE.



References used
https://aclanthology.org/
rate research

Read More

State-of-the-art deep neural networks require large-scale labeled training data that is often expensive to obtain or not available for many tasks. Weak supervision in the form of domain-specific rules has been shown to be useful in such settings to a utomatically generate weakly labeled training data. However, learning with weak rules is challenging due to their inherent heuristic and noisy nature. An additional challenge is rule coverage and overlap, where prior work on weak supervision only considers instances that are covered by weak rules, thus leaving valuable unlabeled data behind. In this work, we develop a weak supervision framework (ASTRA) that leverages all the available data for a given task. To this end, we leverage task-specific unlabeled data through self-training with a model (student) that considers contextualized representations and predicts pseudo-labels for instances that may not be covered by weak rules. We further develop a rule attention network (teacher) that learns how to aggregate student pseudo-labels with weak rule labels, conditioned on their fidelity and the underlying context of an instance. Finally, we construct a semi-supervised learning objective for end-to-end training with unlabeled data, domain-specific rules, and a small amount of labeled data. Extensive experiments on six benchmark datasets for text classification demonstrate the effectiveness of our approach with significant improvements over state-of-the-art baselines.
Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i n pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.
Pre-trained language models (PLMs) like BERT have made great progress in NLP. News articles usually contain rich textual information, and PLMs have the potentials to enhance news text modeling for various intelligent news applications like news recom mendation and retrieval. However, most existing PLMs are in huge size with hundreds of millions of parameters. Many online news applications need to serve millions of users with low latency tolerance, which poses great challenges to incorporating PLMs in these scenarios. Knowledge distillation techniques can compress a large PLM into a much smaller one and meanwhile keeps good performance. However, existing language models are pre-trained and distilled on general corpus like Wikipedia, which has gaps with the news domain and may be suboptimal for news intelligence. In this paper, we propose NewsBERT, which can distill PLMs for efficient and effective news intelligence. In our approach, we design a teacher-student joint learning and distillation framework to collaboratively learn both teacher and student models, where the student model can learn from the learning experience of the teacher model. In addition, we propose a momentum distillation method by incorporating the gradients of teacher model into the update of student model to better transfer the knowledge learned by the teacher model. Thorough experiments on two real-world datasets with three tasks show that NewsBERT can empower various intelligent news applications with much smaller models.
Abstract Pre-trained language representation models (PLMs) cannot well capture factual knowledge from text. In contrast, knowledge embedding (KE) methods can effectively represent the relational facts in knowledge graphs (KGs) with informative entity embeddings, but conventional KE models cannot take full advantage of the abundant textual information. In this paper, we propose a unified model for Knowledge Embedding and Pre-trained LanguagERepresentation (KEPLER), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs. In KEPLER, we encode textual entity descriptions with a PLM as their embeddings, and then jointly optimize the KE and language modeling objectives. Experimental results show that KEPLER achieves state-of-the-art performances on various NLP tasks, and also works remarkably well as an inductive KE model on KG link prediction. Furthermore, for pre-training and evaluating KEPLER, we construct Wikidata5M1 , a large-scale KG dataset with aligned entity descriptions, and benchmark state-of-the-art KE methods on it. It shall serve as a new KE benchmark and facilitate the research on large KG, inductive KE, and KG with text. The source code can be obtained from https://github.com/THU-KEG/KEPLER.
Metaphors are ubiquitous in natural language, and detecting them requires contextual reasoning about whether a semantic incongruence actually exists. Most existing work addresses this problem using pre-trained contextualized models. Despite their suc cess, these models require a large amount of labeled data and are not linguistically-based. In this paper, we proposed a ContrAstive pre-Trained modEl (CATE) for metaphor detection with semi-supervised learning. Our model first uses a pre-trained model to obtain a contextual representation of target words and employs a contrastive objective to promote an increased distance between target words' literal and metaphorical senses based on linguistic theories. Furthermore, we propose a simple strategy to collect large-scale candidate instances from the general corpus and generalize the model via self-training. Extensive experiments show that CATE achieves better performance against state-of-the-art baselines on several benchmark datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا