Do you want to publish a course? Click here

Implicitly Abusive Language -- What does it actually look like and why are we not getting there?

لغة مسيئة ضمنيا - ما الذي يبدو عليه بالفعل ولماذا لا نصل إلى هناك؟

586   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abusive language detection is an emerging field in natural language processing which has received a large amount of attention recently. Still the success of automatic detection is limited. Particularly, the detection of implicitly abusive language, i.e. abusive language that is not conveyed by abusive words (e.g. dumbass or scum), is not working well. In this position paper, we explain why existing datasets make learning implicit abuse difficult and what needs to be changed in the design of such datasets. Arguing for a divide-and-conquer strategy, we present a list of subtypes of implicitly abusive language and formulate research tasks and questions for future research.



References used
https://aclanthology.org/
rate research

Read More

In the last few years, several methods have been proposed to build meta-embeddings. The general aim was to obtain new representations integrating complementary knowledge from different source pre-trained embeddings thereby improving their overall qua lity. However, previous meta-embeddings have been evaluated using a variety of methods and datasets, which makes it difficult to draw meaningful conclusions regarding the merits of each approach. In this paper we propose a unified common framework, including both intrinsic and extrinsic tasks, for a fair and objective meta-embeddings evaluation. Furthermore, we present a new method to generate meta-embeddings, outperforming previous work on a large number of intrinsic evaluation benchmarks. Our evaluation framework also allows us to conclude that previous extrinsic evaluations of meta-embeddings have been overestimated.
The development of neural networks and pretraining techniques has spawned many sentence-level tagging systems that achieved superior performance on typical benchmarks. However, a relatively less discussed topic is what if more context information is introduced into current top-scoring tagging systems. Although several existing works have attempted to shift tagging systems from sentence-level to document-level, there is still no consensus conclusion about when and why it works, which limits the applicability of the larger-context approach in tagging tasks. In this paper, instead of pursuing a state-of-the-art tagging system by architectural exploration, we focus on investigating when and why the larger-context training, as a general strategy, can work. To this end, we conduct a thorough comparative study on four proposed aggregators for context information collecting and present an attribute-aided evaluation method to interpret the improvement brought by larger-context training. Experimentally, we set up a testbed based on four tagging tasks and thirteen datasets. Hopefully, our preliminary observations can deepen the understanding of larger-context training and enlighten more follow-up works on the use of contextual information.
Conversations aimed at determining good recommendations are iterative in nature. People often express their preferences in terms of a critique of the current recommendation (e.g., It doesn't look good for a date''), requiring some degree of common se nse for a preference to be inferred. In this work, we present a method for transforming a user critique into a positive preference (e.g., I prefer more romantic'') in order to retrieve reviews pertaining to potentially better recommendations (e.g., Perfect for a romantic dinner''). We leverage a large neural language model (LM) in a few-shot setting to perform critique-to-preference transformation, and we test two methods for retrieving recommendations: one that matches embeddings, and another that fine-tunes an LM for the task. We instantiate this approach in the restaurant domain and evaluate it using a new dataset of restaurant critiques. In an ablation study, we show that utilizing critique-to-preference transformation improves recommendations, and that there are at least three general cases that explain this improved performance.
Abstract Limerick generation exemplifies some of the most difficult challenges faced in poetry generation, as the poems must tell a story in only five lines, with constraints on rhyme, stress, and meter. To address these challenges, we introduce LimG en, a novel and fully automated system for limerick generation that outperforms state-of-the-art neural network-based poetry models, as well as prior rule-based poetry models. LimGen consists of three important pieces: the Adaptive Multi-Templated Constraint algorithm that constrains our search to the space of realistic poems, the Multi-Templated Beam Search algorithm which searches efficiently through the space, and the probabilistic Storyline algorithm that provides coherent storylines related to a user-provided prompt word. The resulting limericks satisfy poetic constraints and have thematically coherent storylines, which are sometimes even funny (when we are lucky).
Understanding when a text snippet does not provide a sought after information is an essential part of natural language utnderstanding. Recent work (SQuAD 2.0; Rajpurkar et al., 2018) has attempted to make some progress in this direction by enriching the SQuAD dataset for the Extractive QA task with unanswerable questions. However, as we show, the performance of a top system trained on SQuAD 2.0 drops considerably in out-of-domain scenarios, limiting its use in practical situations. In order to study this we build an out-of-domain corpus, focusing on simple event-based questions and distinguish between two types of IDK questions: competitive questions, where the context includes an entity of the same type as the expected answer, and simpler, non-competitive questions where there is no entity of the same type in the context. We find that SQuAD 2.0-based models fail even in the case of the simpler questions. We then analyze the similarities and differences between the IDK phenomenon in Extractive QA and the Recognizing Textual Entailments task (RTE; Dagan et al., 2013) and investigate the extent to which the latter can be used to improve the performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا