Do you want to publish a course? Click here

Automatic Sentence Simplification in Low Resource Settings for Urdu

تبسيط الجملة التلقائي في إعدادات الموارد المنخفضة للأوردو

243   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

To build automated simplification systems, corpora of complex sentences and their simplified versions is the first step to understand sentence complexity and enable the development of automatic text simplification systems. We present a lexical and syntactically simplified Urdu simplification corpus with a detailed analysis of the various simplification operations and human evaluation of corpus quality. We further analyze our corpora using text readability measures and present a comparison of the original, lexical simplified and syntactically simplified corpora. In addition, we compare our corpus with other existing simplification corpora by building simplification systems and evaluating these systems using BLEU and SARI scores. Our system achieves the highest BLEU score and comparable SARI score in comparison to other systems. We release our simplification corpora for the benefit of the research community.



References used
https://aclanthology.org/
rate research

Read More

This paper describes SimpleNER, a model developed for the sentence simplification task at GEM-2021. Our system is a monolingual Seq2Seq Transformer architecture that uses control tokens pre-pended to the data, allowing the model to shape the generate d simplifications according to user desired attributes. Additionally, we show that NER-tagging the training data before use helps stabilize the effect of the control tokens and significantly improves the overall performance of the system. We also employ pretrained embeddings to reduce data sparsity and allow the model to produce more generalizable outputs.
A bigger is better'' explosion in the number of parameters in deep neural networks has made it increasingly challenging to make state-of-the-art networks accessible in compute-restricted environments. Compression techniques have taken on renewed impo rtance as a way to bridge the gap. However, evaluation of the trade-offs incurred by popular compression techniques has been centered on high-resource datasets. In this work, we instead consider the impact of compression in a data-limited regime. We introduce the term low-resource double bind to refer to the co-occurrence of data limitations and compute resource constraints. This is a common setting for NLP for low-resource languages, yet the trade-offs in performance are poorly studied. Our work offers surprising insights into the relationship between capacity and generalization in data-limited regimes for the task of machine translation. Our experiments on magnitude pruning for translations from English into Yoruba, Hausa, Igbo and German show that in low-resource regimes, sparsity preserves performance on frequent sentences but has a disparate impact on infrequent ones. However, it improves robustness to out-of-distribution shifts, especially for datasets that are very distinct from the training distribution. Our findings suggest that sparsity can play a beneficial role at curbing memorization of low frequency attributes, and therefore offers a promising solution to the low-resource double bind.
The quality of fully automated text simplification systems is not good enough for use in real-world settings; instead, human simplifications are used. In this paper, we examine how to improve the cost and quality of human simplifications by leveragin g crowdsourcing. We introduce a graph-based sentence fusion approach to augment human simplifications and a reranking approach to both select high quality simplifications and to allow for targeting simplifications with varying levels of simplicity. Using the Newsela dataset (Xu et al., 2015) we show consistent improvements over experts at varying simplification levels and find that the additional sentence fusion simplifications allow for simpler output than the human simplifications alone.
In this paper, we develop Sindhi subjective lexicon using a merger of existing English resources: NRC lexicon, list of opinion words, SentiWordNet, Sindhi-English bilingual dictionary, and collection of Sindhi modifiers. The positive or negative sent iment score is assigned to each Sindhi opinion word. Afterwards, we determine the coverage of the proposed lexicon with subjectivity analysis. Moreover, we crawl multi-domain tweet corpus of news, sports, and finance. The crawled corpus is annotated by experienced annotators using the Doccano text annotation tool. The sentiment annotated corpus is evaluated by employing support vector machine (SVM), recurrent neural network (RNN) variants, and convolutional neural network (CNN).
State-of-the-art abstractive summarization models generally rely on extensive labeled data, which lowers their generalization ability on domains where such data are not available. In this paper, we present a study of domain adaptation for the abstrac tive summarization task across six diverse target domains in a low-resource setting. Specifically, we investigate the second phase of pre-training on large-scale generative models under three different settings: 1) source domain pre-training; 2) domain-adaptive pre-training; and 3) task-adaptive pre-training. Experiments show that the effectiveness of pre-training is correlated with the similarity between the pre-training data and the target domain task. Moreover, we find that continuing pre-training could lead to the pre-trained model's catastrophic forgetting, and a learning method with less forgetting can alleviate this issue. Furthermore, results illustrate that a huge gap still exists between the low-resource and high-resource settings, which highlights the need for more advanced domain adaptation methods for the abstractive summarization task.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا