Do you want to publish a course? Click here

Error Analysis of using BART for Multi-Document Summarization: A Study for English and German Language

تحليل الأخطاء لاستخدام بارت لتلخيص متعدد الوثائق: دراسة اللغة الإنجليزية والألمانية

277   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Recent research using pre-trained language models for multi-document summarization task lacks deep investigation of potential erroneous cases and their possible application on other languages. In this work, we apply a pre-trained language model (BART) for multi-document summarization (MDS) task using both fine-tuning and without fine-tuning. We use two English datasets and one German dataset for this study. First, we reproduce the multi-document summaries for English language by following one of the recent studies. Next, we show the applicability of the model to German language by achieving state-of-the-art performance on German MDS. We perform an in-depth error analysis of the followed approach for both languages, which leads us to identifying most notable errors, from made-up facts and topic delimitation, and quantifying the amount of extractiveness.



References used
https://aclanthology.org/
rate research

Read More

This paper proposes a new abstractive document summarization model, hierarchical BART (Hie-BART), which captures hierarchical structures of a document (i.e., sentence-word structures) in the BART model. Although the existing BART model has achieved a state-of-the-art performance on document summarization tasks, the model does not have the interactions between sentence-level information and word-level information. In machine translation tasks, the performance of neural machine translation models has been improved by incorporating multi-granularity self-attention (MG-SA), which captures the relationships between words and phrases. Inspired by the previous work, the proposed Hie-BART model incorporates MG-SA into the encoder of the BART model for capturing sentence-word structures. Evaluations on the CNN/Daily Mail dataset show that the proposed Hie-BART model outperforms some strong baselines and improves the performance of a non-hierarchical BART model (+0.23 ROUGE-L).
A critical point of multi-document summarization (MDS) is to learn the relations among various documents. In this paper, we propose a novel abstractive MDS model, in which we represent multiple documents as a heterogeneous graph, taking semantic node s of different granularities into account, and then apply a graph-to-sequence framework to generate summaries. Moreover, we employ a neural topic model to jointly discover latent topics that can act as cross-document semantic units to bridge different documents and provide global information to guide the summary generation. Since topic extraction can be viewed as a special type of summarization that summarizes'' texts into a more abstract format, i.e., a topic distribution, we adopt a multi-task learning strategy to jointly train the topic and summarization module, allowing the promotion of each other. Experimental results on the Multi-News dataset demonstrate that our model outperforms previous state-of-the-art MDS models on both Rouge scores and human evaluation, meanwhile learns high-quality topics.
We present a method for generating comparative summaries that highlight similarities and contradictions in input documents. The key challenge in creating such summaries is the lack of large parallel training data required for training typical summari zation systems. To this end, we introduce a hybrid generation approach inspired by traditional concept-to-text systems. To enable accurate comparison between different sources, the model first learns to extract pertinent relations from input documents. The content planning component uses deterministic operators to aggregate these relations after identifying a subset for inclusion into a summary. The surface realization component lexicalizes this information using a text-infilling language model. By separately modeling content selection and realization, we can effectively train them with limited annotations. We implemented and tested the model in the domain of nutrition and health -- rife with inconsistencies. Compared to conventional methods, our framework leads to more faithful, relevant and aggregation-sensitive summarization -- while being equally fluent.
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s). While such content may appear at the beginning of a single document, essential information is frequently reiterated in a set of documents related to a particular topic, resulting in an endorsement effect that increases information salience. In this paper, we model the cross-document endorsement effect and its utilization in multiple document summarization. Our method generates a synopsis from each document, which serves as an endorser to identify salient content from other documents. Strongly endorsed text segments are used to enrich a neural encoder-decoder model to consolidate them into an abstractive summary. The method has a great potential to learn from fewer examples to identify salient content, which alleviates the need for costly retraining when the set of documents is dynamically adjusted. Through extensive experiments on benchmark multi-document summarization datasets, we demonstrate the effectiveness of our proposed method over strong published baselines. Finally, we shed light on future research directions and discuss broader challenges of this task using a case study.
Abstract The metrics standardly used to evaluate Natural Language Generation (NLG) models, such as BLEU or METEOR, fail to provide information on which linguistic factors impact performance. Focusing on Surface Realization (SR), the task of convertin g an unordered dependency tree into a well-formed sentence, we propose a framework for error analysis which permits identifying which features of the input affect the models' results. This framework consists of two main components: (i) correlation analyses between a wide range of syntactic metrics and standard performance metrics and (ii) a set of techniques to automatically identify syntactic constructs that often co-occur with low performance scores. We demonstrate the advantages of our framework by performing error analysis on the results of 174 system runs submitted to the Multilingual SR shared tasks; we show that dependency edge accuracy correlate with automatic metrics thereby providing a more interpretable basis for evaluation; and we suggest ways in which our framework could be used to improve models and data. The framework is available in the form of a toolkit which can be used both by campaign organizers to provide detailed, linguistically interpretable feedback on the state of the art in multilingual SR, and by individual researchers to improve models and datasets.1

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا