Do you want to publish a course? Click here

A Privacy-Preserving Approach to Extraction of Personal Information through Automatic Annotation and Federated Learning

نهج الحفاظ على الخصوصية لاستخراج المعلومات الشخصية من خلال التوضيح التلقائي والتعلم الفيدرالي

540   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We curated WikiPII, an automatically labeled dataset composed of Wikipedia biography pages, annotated for personal information extraction. Although automatic annotation can lead to a high degree of label noise, it is an inexpensive process and can generate large volumes of annotated documents. We trained a BERT-based NER model with WikiPII and showed that with an adequately large training dataset, the model can significantly decrease the cost of manual information extraction, despite the high level of label noise. In a similar approach, organizations can leverage text mining techniques to create customized annotated datasets from their historical data without sharing the raw data for human annotation. Also, we explore collaborative training of NER models through federated learning when the annotation is noisy. Our results suggest that depending on the level of trust to the ML operator and the volume of the available data, distributed training can be an effective way of training a personal information identifier in a privacy-preserved manner. Research material is available at https://github.com/ratmcu/wikipiifed.



References used
https://aclanthology.org/
rate research

Read More

News recommendation is critical for personalized news access. Most existing news recommendation methods rely on centralized storage of users' historical news click behavior data, which may lead to privacy concerns and hazards. Federated Learning is a privacy-preserving framework for multiple clients to collaboratively train models without sharing their private data. However, the computation and communication cost of directly learning many existing news recommendation models in a federated way are unacceptable for user clients. In this paper, we propose an efficient federated learning framework for privacy-preserving news recommendation. Instead of training and communicating the whole model, we decompose the news recommendation model into a large news model maintained in the server and a light-weight user model shared on both server and clients, where news representations and user model are communicated between server and clients. More specifically, the clients request the user model and news representations from the server, and send their locally computed gradients to the server for aggregation. The server updates its global user model with the aggregated gradients, and further updates its news model to infer updated news representations. Since the local gradients may contain private information, we propose a secure aggregation method to aggregate gradients in a privacy-preserving way. Experiments on two real-world datasets show that our method can reduce the computation and communication cost on clients while keep promising model performance.
Linguistic typology is an area of linguistics concerned with analysis of and comparison between natural languages of the world based on their certain linguistic features. For that purpose, historically, the area has relied on manual extraction of lin guistic feature values from textural descriptions of languages. This makes it a laborious and time expensive task and is also bound by human brain capacity. In this study, we present a deep learning system for the task of automatic extraction of linguistic features from textual descriptions of natural languages. First, textual descriptions are manually annotated with special structures called semantic frames. Those annotations are learned by a recurrent neural network, which is then used to annotate un-annotated text. Finally, the annotations are converted to linguistic feature values using a separate rule based module. Word embeddings, learned from general purpose text, are used as a major source of knowledge by the recurrent neural network. We compare the proposed deep learning system to a previously reported machine learning based system for the same task, and the deep learning system wins in terms of F1 scores with a fair margin. Such a system is expected to be a useful contribution for the automatic curation of typological databases, which otherwise are manually developed.
Meeting minutes record any subject matter discussed, decisions reached and actions taken at the meeting. The importance of automatic minuting cannot be overstated. In this paper, we present a sliding window approach to automatic generation of meeting minutes. It aims at addressing issues pertaining to the nature of spoken text, including the lengthy transcript and lack of document structure, which make it difficult to identify salient content to be included in meeting minutes. Our approach combines a sliding-window approach and a neural abstractive summarizer to navigate through the raw transcript to find salient content. The approach is evaluated on transcripts of natural meeting conversations, where we compare results obtained for human transcripts and two versions of automatic transcripts and discuss how and to what extent the summarizer succeeds at capturing salient content.
Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resour ces, recent studies show that such labels take more training steps to be memorized and are more frequently forgotten than clean labels, therefore are identifiable in training. Motivated by such properties, we propose a simple co-regularization framework for entity-centric information extraction, which consists of several neural models with identical structures but different parameter initialization. These models are jointly optimized with the task-specific losses and are regularized to generate similar predictions based on an agreement loss, which prevents overfitting on noisy labels. Extensive experiments on two widely used but noisy benchmarks for information extraction, TACRED and CoNLL03, demonstrate the effectiveness of our framework. We release our code to the community for future research.
Modern deep learning models for natural language processing rely heavily on large amounts of annotated texts. However, obtaining such texts may be difficult when they contain personal or confidential information, for example, in health or legal domai ns. In this work, we propose a method of de-identifying free-form text documents by carefully redacting sensitive data in them. We show that our method preserves data utility for text classification, sequence labeling and question answering tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا