Do you want to publish a course? Click here

Interpretable Propaganda Detection in News Articles

كشف الدعاية القابلة للتفسير في المقالات الإخبارية

253   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Online users today are exposed to misleading and propagandistic news articles and media posts on a daily basis. To counter thus, a number of approaches have been designed aiming to achieve a healthier and safer online news and media consumption. Automatic systems are able to support humans in detecting such content; yet, a major impediment to their broad adoption is that besides being accurate, the decisions of such systems need also to be interpretable in order to be trusted and widely adopted by users. Since misleading and propagandistic content influences readers through the use of a number of deception techniques, we propose to detect and to show the use of such techniques as a way to offer interpretability. In particular, we define qualitatively descriptive features and we analyze their suitability for detecting deception techniques. We further show that our interpretable features can be easily combined with pre-trained language models, yielding state-of-the-art results.



References used
https://aclanthology.org/
rate research

Read More

We describe our systems of subtask1 and subtask3 for SemEval-2021 Task 6 on Detection of Persuasion Techniques in Texts and Images. The purpose of subtask1 is to identify propaganda techniques given textual content, and the goal of subtask3 is to det ect them given both textual and visual content. For subtask1, we investigate transfer learning based on pre-trained language models (PLMs) such as BERT, RoBERTa to solve data sparsity problems. For subtask3, we extract heterogeneous visual representations (i.e., face features, OCR features, and multimodal representations) and explore various multimodal fusion strategies to combine the textual and visual representations. The official evaluation shows our ensemble model ranks 1st for subtask1 and 2nd for subtask3.
Several cluster-based methods for semantic change detection with contextual embeddings emerged recently. They allow a fine-grained analysis of word use change by aggregating embeddings into clusters that reflect the different usages of the word. Howe ver, these methods are unscalable in terms of memory consumption and computation time. Therefore, they require a limited set of target words to be picked in advance. This drastically limits the usability of these methods in open exploratory tasks, where each word from the vocabulary can be considered as a potential target. We propose a novel scalable method for word usage-change detection that offers large gains in processing time and significant memory savings while offering the same interpretability and better performance than unscalable methods. We demonstrate the applicability of the proposed method by analysing a large corpus of news articles about COVID-19.
The widespread use of the Internet and the rapid dissemination of information poses the challenge of identifying the veracity of its content. Stance detection, which is the task of predicting the position of a text in regard to a specific target (e.g . claim or debate question), has been used to determine the veracity of information in tasks such as rumor classification and fake news detection. While most of the work and available datasets for stance detection address short texts snippets extracted from textual dialogues, social media platforms, or news headlines with a strong focus on the English language, there is a lack of resources targeting long texts in other languages. Our contribution in this paper is twofold. First, we present a German dataset of debate questions and news articles that is manually annotated for stance and emotion detection. Second, we leverage the dataset to tackle the supervised task of classifying the stance of a news article with regards to a debate question and provide baseline models as a reference for future work on stance detection in German news articles.
Despite the increasing popularity of NLP in the humanities and social sciences, advances in model performance and complexity have been accompanied by concerns about interpretability and explanatory power for sociocultural analysis. One popular model that takes a middle road is Word Mover's Distance (WMD). Ostensibly adapted for its interpretability, WMD has nonetheless been used and further developed in ways which frequently discard its most interpretable aspect: namely, the word-level distances required for translating a set of words into another set of words. To address this apparent gap, we introduce WMDecompose: a model and Python library that 1) decomposes document-level distances into their constituent word-level distances, and 2) subsequently clusters words to induce thematic elements, such that useful lexical information is retained and summarized for analysis. To illustrate its potential in a social scientific context, we apply it to a longitudinal social media corpus to explore the interrelationship between conspiracy theories and conservative American discourses. Finally, because of the full WMD model's high time-complexity, we additionally suggest a method of sampling document pairs from large datasets in a reproducible way, with tight bounds that prevent extrapolation of unreliable results due to poor sampling practices.
Among the tasks motivated by the proliferation of misinformation, propaganda detection is particularly challenging due to the deficit of fine-grained manual annotations required to train machine learning models. Here we show how data from other relat ed tasks, including credibility assessment, can be leveraged in multi-task learning (MTL) framework to accelerate the training process. To that end, we design a BERT-based model with multiple output layers, train it in several MTL scenarios and perform evaluation against the SemEval gold standard.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا