يتعرض المستخدمون عبر الإنترنت اليوم للمقالات الإخبارية المضللة والدعاية ووظائف الإعلام على أساس يومي.وبالتالي، فقد تم تصميم عدد من الأساليب تهدف إلى تحقيق أخبار غير صحية وأكثر أمانا على الإنترنت واستهلاك وسائل الإعلام.النظم التلقائية قادرة على دعم البشر في الكشف عن هذا المحتوى؛ومع ذلك، فإن عائق كبير أمام تبنيها الواسع هو أنه بالإضافة إلى كونه دقيقا، فإن قرارات مثل هذه الأنظمة تحتاج أيضا إلى تفسيرها من أجل موثوق بها واعتمادها على نطاق واسع من قبل المستخدمين.نظرا لأن المحتوى المضلل والدعاية يؤثر على القراء من خلال استخدام عدد من تقنيات الخداع، فإننا نقترح اكتشاف وإظهار استخدام هذه التقنيات كوسيلة لتقديم إمكانية الترجمة الشفوية.على وجه الخصوص، نحدد الميزات الوصفية النوعية ونحن نحلل ملاءمتها للكشف عن تقنيات الخداع.نظل كذلك أن ميزاتنا المترجمة الخاصة بنا يمكن دمجها بسهولة مع نماذج اللغة المدربة مسبقا، مما يؤدي إلى نتائج حديثة من بين الفن.
Online users today are exposed to misleading and propagandistic news articles and media posts on a daily basis. To counter thus, a number of approaches have been designed aiming to achieve a healthier and safer online news and media consumption. Automatic systems are able to support humans in detecting such content; yet, a major impediment to their broad adoption is that besides being accurate, the decisions of such systems need also to be interpretable in order to be trusted and widely adopted by users. Since misleading and propagandistic content influences readers through the use of a number of deception techniques, we propose to detect and to show the use of such techniques as a way to offer interpretability. In particular, we define qualitatively descriptive features and we analyze their suitability for detecting deception techniques. We further show that our interpretable features can be easily combined with pre-trained language models, yielding state-of-the-art results.
References used
https://aclanthology.org/
We describe our systems of subtask1 and subtask3 for SemEval-2021 Task 6 on Detection of Persuasion Techniques in Texts and Images. The purpose of subtask1 is to identify propaganda techniques given textual content, and the goal of subtask3 is to det
Several cluster-based methods for semantic change detection with contextual embeddings emerged recently. They allow a fine-grained analysis of word use change by aggregating embeddings into clusters that reflect the different usages of the word. Howe
The widespread use of the Internet and the rapid dissemination of information poses the challenge of identifying the veracity of its content. Stance detection, which is the task of predicting the position of a text in regard to a specific target (e.g
Despite the increasing popularity of NLP in the humanities and social sciences, advances in model performance and complexity have been accompanied by concerns about interpretability and explanatory power for sociocultural analysis. One popular model
Among the tasks motivated by the proliferation of misinformation, propaganda detection is particularly challenging due to the deficit of fine-grained manual annotations required to train machine learning models. Here we show how data from other relat