Do you want to publish a course? Click here

Incremental Graph-Based Semantics and Reasoning for Conversational AI

تدريجي في الرسم البياني المستندة إلى الرسم البياني والاستفادة من المحادثة

674   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The next generation of conversational AI systems need to: (1) process language incrementally, token-by-token to be more responsive and enable handling of conversational phenomena such as pauses, restarts and self-corrections; (2) reason incrementally allowing meaning to be established beyond what is said; (3) be transparent and controllable, allowing designers as well as the system itself to easily establish reasons for particular behaviour and tailor to particular user groups, or domains. In this short paper we present ongoing preliminary work combining Dynamic Syntax (DS) - an incremental, semantic grammar framework - with the Resource Description Framework (RDF). This paves the way for the creation of incremental semantic parsers that progressively output semantic RDF graphs as an utterance unfolds in real-time. We also outline how the parser can be integrated with an incremental reasoning engine through RDF. We argue that this DS-RDF hybrid satisfies the desiderata listed above, yielding semantic infrastructure that can be used to build responsive, real-time, interpretable Conversational AI that can be rapidly customised for specific user groups such as people with dementia.



References used
https://aclanthology.org/
rate research

Read More

Growing interests have been attracted in Conversational Recommender Systems (CRS), which explore user preference through conversational interactions in order to make appropriate recommendation. However, there is still a lack of ability in existing CR S to (1) traverse multiple reasoning paths over background knowledge to introduce relevant items and attributes, and (2) arrange selected entities appropriately under current system intents to control response generation. To address these issues, we propose CR-Walker in this paper, a model that performs tree-structured reasoning on a knowledge graph, and generates informative dialog acts to guide language generation. The unique scheme of tree-structured reasoning views the traversed entity at each hop as part of dialog acts to facilitate language generation, which links how entities are selected and expressed. Automatic and human evaluations show that CR-Walker can arrive at more accurate recommendation, and generate more informative and engaging responses.
Conversational semantic role labeling (CSRL) is believed to be a crucial step towards dialogue understanding. However, it remains a major challenge for existing CSRL parser to handle conversational structural information. In this paper, we present a simple and effective architecture for CSRL which aims to address this problem. Our model is based on a conversational structure aware graph network which explicitly encodes the speaker dependent information. We also propose a multi-task learning method to further improve the model. Experimental results on benchmark datasets show that our model with our proposed training objectives significantly outperforms previous baselines.
Much recent work in bilingual lexicon induction (BLI) views word embeddings as vectors in Euclidean space. As such, BLI is typically solved by finding a linear transformation that maps embeddings to a common space. Alternatively, word embeddings may be understood as nodes in a weighted graph. This framing allows us to examine a node's graph neighborhood without assuming a linear transform, and exploits new techniques from the graph matching optimization literature. These contrasting approaches have not been compared in BLI so far. In this work, we study the behavior of Euclidean versus graph-based approaches to BLI under differing data conditions and show that they complement each other when combined. We release our code at https://github.com/kellymarchisio/euc-v-graph-bli.
Table-based fact verification task aims to verify whether the given statement is supported by the given semi-structured table. Symbolic reasoning with logical operations plays a crucial role in this task. Existing methods leverage programs that conta in rich logical information to enhance the verification process. However, due to the lack of fully supervised signals in the program generation process, spurious programs can be derived and employed, which leads to the inability of the model to catch helpful logical operations. To address the aforementioned problems, in this work, we formulate the table-based fact verification task as an evidence retrieval and reasoning framework, proposing the Logic-level Evidence Retrieval and Graph-based Verification network (LERGV). Specifically, we first retrieve logic-level program-like evidence from the given table and statement as supplementary evidence for the table. After that, we construct a logic-level graph to capture the logical relations between entities and functions in the retrieved evidence, and design a graph-based verification network to perform logic-level graph-based reasoning based on the constructed graph to classify the final entailment relation. Experimental results on the large-scale benchmark TABFACT show the effectiveness of the proposed approach.
Implicit discourse relation recognition (IDRR) aims to identify logical relations between two adjacent sentences in the discourse. Existing models fail to fully utilize the contextual information which plays an important role in interpreting each loc al sentence. In this paper, we thus propose a novel graph-based Context Tracking Network (CT-Net) to model the discourse context for IDRR. The CT-Net firstly converts the discourse into the paragraph association graph (PAG), where each sentence tracks their closely related context from the intricate discourse through different types of edges. Then, the CT-Net extracts contextual representation from the PAG through a specially designed cross-grained updating mechanism, which can effectively integrate both sentence-level and token-level contextual semantics. Experiments on PDTB 2.0 show that the CT-Net gains better performance than models that roughly model the context.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا