Do you want to publish a course? Click here

Argument Mining for Scholarly Document Processing: Taking Stock and Looking Ahead

حجة التعدين لمعالجة المستندات العلمية: أخذ الأسهم والنظر إلى الأمام

239   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Argument mining targets structures in natural language related to interpretation and persuasion which are central to scientific communication. Most scholarly discourse involves interpreting experimental evidence and attempting to persuade other scientists to adopt the same conclusions. While various argument mining studies have addressed student essays and news articles, those that target scientific discourse are still scarce. This paper surveys existing work in argument mining of scholarly discourse, and provides an overview of current models, data, tasks, and applications. We identify a number of key challenges confronting argument mining in the scientific domain, and suggest some possible solutions and future directions.



References used
https://aclanthology.org/
rate research

Read More

With the ever-increasing pace of research and high volume of scholarly communication, scholars face a daunting task. Not only must they keep up with the growing literature in their own and related fields, scholars increasingly also need to rebut pseu do-science and disinformation. These needs have motivated an increasing focus on computational methods for enhancing search, summarization, and analysis of scholarly documents. However, the various strands of research on scholarly document processing remain fragmented. To reach out to the broader NLP and AI/ML community, pool distributed efforts in this area, and enable shared access to published research, we held the 2nd Workshop on Scholarly Document Processing (SDP) at NAACL 2021 as a virtual event (https://sdproc.org/2021/). The SDP workshop consisted of a research track, three invited talks, and three Shared Tasks (LongSumm 2021, SCIVER, and 3C). The program was geared towards the application of NLP, information retrieval, and data mining for scholarly documents, with an emphasis on identifying and providing solutions to open challenges.
With the increase in the number of published academic papers, growing expectations have been placed on research related to supporting the writing process of scientific papers. Recently, research has been conducted on various tasks such as citation wo rthiness (judging whether a sentence requires citation), citation recommendation, and citation-text generation. However, since each task has been studied and evaluated using data that has been independently developed, it is currently impossible to verify whether such tasks can be successfully pipelined to effective use in scientific-document writing. In this paper, we first define a series of tasks related to scientific-document writing that can be pipelined. Then, we create a dataset of academic papers that can be used for the evaluation of each task as well as a series of these tasks. Finally, using the dataset, we evaluate the tasks of citation worthiness and citation recommendation as well as both of these tasks integrated. The results of our evaluations show that the proposed approach is promising.
Despite the remarkable progress in the field of computational argumentation, dialogue systems concerned with argumentative tasks often rely on structured knowledge about arguments and their relations. Since the manual acquisition of these argument st ructures is highly time-consuming, the corresponding systems are inflexible regarding the topics they can discuss. To address this issue, we propose a combination of argumentative dialogue systems with argument search technology that enables a system to discuss any topic on which the search engine is able to find suitable arguments. Our approach utilizes supervised learning-based relation classification to map the retrieved arguments into a general tree structure for use in dialogue systems. We evaluate the approach with a state of the art search engine and a recently introduced dialogue model in an extensive user study with respect to the dialogue coherence. The results vary between the investigated topics (and hence depend on the quality of the underlying data) but are in some instances surprisingly close to the results achieved with a manually annotated argument structure.
Understanding linguistic modality is widely seen as important for downstream tasks such as Question Answering and Knowledge Graph Population. Entailment Graph learning might also be expected to benefit from attention to modality. We build Entailment Graphs using a news corpus filtered with a modality parser, and show that stripping modal modifiers from predicates in fact increases performance. This suggests that for some tasks, the pragmatics of modal modification of predicates allows them to contribute as evidence of entailment.
In this tutorial, we will show where we are and where we will be to those researchers interested in this topic. We divide this tutorial into three parts, including coarse-grained financial opinion mining, fine-grained financial opinion mining, and po ssible research directions. This tutorial starts by introducing the components in a financial opinion proposed in our research agenda and summarizes their related studies. We also highlight the task of mining customers' opinions toward financial services in the FinTech industry, and compare them with usual opinions. Several potential research questions will be addressed. We hope the audiences of this tutorial will gain an overview of financial opinion mining and figure out their research directions.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا