تقدم هذه الورقة أحد أنظمة المحلول الفائزة الأعلى للمهمة 7 في Semeval2021، Hahackathon: الكشف عن الفكاهة والعموم. تنقسم هذه المسابقة إلى مهام اثنين، Task1 مع ثلاث مهام فرعية 1A، 1B، و 1C، و TASK2. الهدف من المهمة 1 هو التنبؤ إذا كان النص يعتبر روح الدعابة أم لا، وإذا كان الأمر نعم، فقم بالتنبؤ بمكام روح الدعابة وما إذا كان التصنيف فكاهة سيكون مثيرا للجدل. الهدف من المهمة 2 هو التنبؤ بكيفية اعتبار النص مسيئا للمستخدمين بشكل عام. تم تطوير حلنا باستخدام نموذج روبرتا المدرب مسبقا مع تقنيات الفرقة. تصف الورقة بنية نظام الحل المقدم مع التجارب وضبط فرط الضغط الذي أدى إلى هذا النظام القوي. في المرتبة النموذجية المرتبة الثالثة والرابعة من 50 فريقا في المهام 1C و 1A مع درجة F1 0.6270 و 0.9675 على التوالي. في الوقت نفسه، احتل النموذج واحدا من أفضل 10 نماذج في المهمة 1B والمهمة 2 مع درجات RMSE من 0.5446 و 0.4469 على التوالي.
This paper presents one of the top winning solution systems for task 7 at SemEval2021, HaHackathon: Detecting and Rating Humor and Offense. This competition is divided into two tasks, task1 with three sub-tasks 1a,1b, and 1c, and task2. The goal for task1 is to predict if the text would be considered humorous or not, and if it is yes, then predict how humorous it is and whether the humor rating would be perceived as controversial. The goal of the task2 is to predict how the text is considered offensive for users in general. Our solution has been developed using RoBERTa pre-trained model with ensemble techniques. The paper describes the submitted solution system's architecture with the experiments and the hyperparameter tuning that led to this robust system. Our model ranked third and fourth places out of 50 teams in tasks 1c and 1a with F1-Score of 0.6270 and 0.9675, respectively. At the same time, the model ranked one of the top 10 models in task 1b and task 2 with an RMSE scores of 0.5446 and 0.4469, respectively.
References used
https://aclanthology.org/
This article introduces the submission of subtask 1 and subtask 2 that we participate in SemEval-2021 Task 7: HaHackathon: Detecting and Rating Humor and Offense, we use a model based on ALBERT that uses ALBERT as the module for extracting text featu
Humor recognition is a challenging task in natural language processing. This document presents my approaches to detect and rate humor and offense from the given text. This task includes 2 tasks: task 1 which contains 3 subtasks (1a, 1b, and 1c), and
This paper presents the DuluthNLP submission to Task 7 of the SemEval 2021 competition on Detecting and Rating Humor and Offense. In it, we explain the approach used to train the model together with the process of fine-tuning our model in getting the
This paper describes the system used for detecting humor in text. The system developed by the team TECHSSN uses binary classification techniques to classify the text. The data undergoes preprocessing and is given to ColBERT (Contextualized Late Inter
SemEval 2021 Task 7, HaHackathon, was the first shared task to combine the previously separate domains of humor detection and offense detection. We collected 10,000 texts from Twitter and the Kaggle Short Jokes dataset, and had each annotated for hum