Do you want to publish a course? Click here

Fine-tuning Transformers for Identifying Self-Reporting Potential Cases and Symptoms of COVID-19 in Tweets

محولات ضبط الجميلة لتحديد القضايا المحتملة للإبلاغ عنها وأعراض Covid-19 في تغريدات

311   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We describe our straight-forward approach for Tasks 5 and 6 of 2021 Social Media Min- ing for Health Applications (SMM4H) shared tasks. Our system is based on fine-tuning Dis- tillBERT on each task, as well as first fine- tuning the model on the other task. In this paper, we additionally explore how much fine- tuning is necessary for accurately classifying tweets as containing self-reported COVID-19 symptoms (Task 5) or whether a tweet related to COVID-19 is self-reporting, non-personal reporting, or a literature/news mention of the virus (Task 6).



References used
https://aclanthology.org/
rate research

Read More

This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745.
Finding informative COVID-19 posts in a stream of tweets is very useful to monitor health-related updates. Prior work focused on a balanced data setup and on English, but informative tweets are rare, and English is only one of the many languages spok en in the world. In this work, we introduce a new dataset of 5,000 tweets for finding informative COVID-19 tweets for Danish. In contrast to prior work, which balances the label distribution, we model the problem by keeping its natural distribution. We examine how well a simple probabilistic model and a convolutional neural network (CNN) perform on this task. We find a weighted CNN to work well but it is sensitive to embedding and hyperparameter choices. We hope the contributed dataset is a starting point for further work in this direction.
The spread of COVID-19 has been accompanied with widespread misinformation on social media. In particular, Twitterverse has seen a huge increase in dissemination of distorted facts and figures. The present work aims at identifying tweets regarding CO VID-19 which contains harmful and false information. We have experimented with a number of Deep Learning-based models, including different word embeddings, such as Glove, ELMo, among others. BERTweet model achieved the best overall F1-score of 0.881 and secured the third rank on the above task.
Over the past few months, there were huge numbers of circulating tweets and discussions about Coronavirus (COVID-19) in the Arab region. It is important for policy makers and many people to identify types of shared tweets to better understand public behavior, topics of interest, requests from governments, sources of tweets, etc. It is also crucial to prevent spreading of rumors and misinformation about the virus or bad cures. To this end, we present the largest manually annotated dataset of Arabic tweets related to COVID-19. We describe annotation guidelines, analyze our dataset and build effective machine learning and transformer based models for classification.
Data-to-text (D2T) generation in the biomedical domain is a promising - yet mostly unexplored - field of research. Here, we apply neural models for D2T generation to a real-world dataset consisting of package leaflets of European medicines. We show t hat fine-tuned transformers are able to generate realistic, multi-sentence text from data in the biomedical domain, yet have important limitations. We also release a new dataset (BioLeaflets) for benchmarking D2T generation models in the biomedical domain.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا