التقييم البشري التجريدي لأنظمة الترجمة عالية الجودة الحديثة هي مشكلة صعبة، وهناك أدلة متزايدة على أن إجراءات التقييم غير الكافية يمكن أن تؤدي إلى استنتاجات خاطئة. بينما كان هناك بحث كبير في التقييم البشري، لا يزال الحقل يفتقر إلى إجراء قياسي شائع. كخطوة نحو هذا الهدف، نقترح منهجية تقييم في تحليل خطأ صريح، استنادا إلى إطار مقاييس الجودة متعددة الأبعاد (MQM). نحن نفذت أكبر دراسة بحثية MQM حتى الآن، وتسجيل مخرجات الأنظمة العليا من المهمة المشتركة WMT 2020 في أزواج لغتين باستخدام التعليقات التوضيحية المقدمة من المترجمين المحترفين مع الوصول إلى سياق المستند الكامل. نقوم بتحليل البيانات الناتجة على نطاق واسع، والعثور على نتائج أخرى بمثابة ترتيب مختلف تماما للأنظمة المقدرة من تلك المنشأة من قبل عمال الحشد WMT، تعرض تفضيل واضح لإخراج الإنسان على الجهاز. من المستغرب، نجد أيضا أن المقاييس التلقائية القائمة على المدينات المدربة مسبقا يمكن أن تفوق عمال الحشد البشري. نحن نجعل كوربوس متاحة علنا لمزيد من البحث.
Abstract Human evaluation of modern high-quality machine translation systems is a difficult problem, and there is increasing evidence that inadequate evaluation procedures can lead to erroneous conclusions. While there has been considerable research on human evaluation, the field still lacks a commonly accepted standard procedure. As a step toward this goal, we propose an evaluation methodology grounded in explicit error analysis, based on the Multidimensional Quality Metrics (MQM) framework. We carry out the largest MQM research study to date, scoring the outputs of top systems from the WMT 2020 shared task in two language pairs using annotations provided by professional translators with access to full document context. We analyze the resulting data extensively, finding among other results a substantially different ranking of evaluated systems from the one established by the WMT crowd workers, exhibiting a clear preference for human over machine output. Surprisingly, we also find that automatic metrics based on pre-trained embeddings can outperform human crowd workers. We make our corpus publicly available for further research.
References used
https://aclanthology.org/
Recent advances in neural machine translation (NMT) have pushed the quality of machine translation systems to the point where they are becoming widely adopted to build competitive systems. However, there is still a large number of languages that are
Recent studies emphasize the need of document context in human evaluation of machine translations, but little research has been done on the impact of user interfaces on annotator productivity and the reliability of assessments. In this work, we compa
This work introduces Itihasa, a large-scale translation dataset containing 93,000 pairs of Sanskrit shlokas and their English translations. The shlokas are extracted from two Indian epics viz., The Ramayana and The Mahabharata. We first describe the
Recent development in NLP shows a strong trend towards refining pre-trained models with a domain-specific dataset. This is especially the case for response generation where emotion plays an important role. However, existing empathetic datasets remain
Automatic image captioning has improved significantly over the last few years, but the problem is far from being solved, with state of the art models still often producing low quality captions when used in the wild. In this paper, we focus on the tas