الملخص لتطوير تطبيقات NLP المتطرفة المنطقية، وهو رسم بياني معرفي شامل ودقيق للعموم (CKG).إنها تستغرق وقتا طويلا لإنشاء CKGS يدويا والعديد من جهود البحثية التي تم تخصيصها للبناء التلقائي CKGS.تركز النهج السابقة على توليد المفاهيم التي لديها علاقات مباشرة واضحة مع المفاهيم القائمة وتفتقر إلى القدرة على توليد مفاهيم غير واضحة.في هذا العمل، نهدف إلى سد هذه الفجوة.نقترح الإطار العام لإحاطاء بيئة الرسم البياني إلى مسارات يرفع هياكل مرتفعة في CKGS لالتقاط علاقات عالية الجودة بين المفاهيم.نحن إنشاء هذا الإطار العام إلى أربع حالات خاصة: المسار الطويل، المسار إلى المسار، جهاز التوجيه، ورأس الرسم البياني - مسار العقدة.تجارب على مجموعة بيانات اثنين تثبت فعالية أساليبنا.سيتم إصدار الرمز عبر مستودع GitHub العام.
Abstract To develop commonsense-grounded NLP applications, a comprehensive and accurate commonsense knowledge graph (CKG) is needed. It is time-consuming to manually construct CKGs and many research efforts have been devoted to the automatic construction of CKGs. Previous approaches focus on generating concepts that have direct and obvious relationships with existing concepts and lack an capability to generate unobvious concepts. In this work, we aim to bridge this gap. We propose a general graph-to-paths pretraining framework that leverages high-order structures in CKGs to capture high-order relationships between concepts. We instantiate this general framework to four special cases: long path, path-to-path, router, and graph-node-path. Experiments on two datasets demonstrate the effectiveness of our methods. The code will be released via the public GitHub repository.
References used
https://aclanthology.org/
Knowledge graph embedding, representing entities and relations in the knowledge graphs with high-dimensional vectors, has made significant progress in link prediction. More researchers have explored the representational capabilities of models in rece
This survey/position paper discusses ways to improve coverage of resources such as WordNet. Rapp estimated correlations, rho, between corpus statistics and pyscholinguistic norms. rho improves with quantity (corpus size) and quality (balance). 1M wor
Growing interests have been attracted in Conversational Recommender Systems (CRS), which explore user preference through conversational interactions in order to make appropriate recommendation. However, there is still a lack of ability in existing CR
Relations in most of the traditional knowledge graphs (KGs) only reflect static and factual connections, but fail to represent the dynamic activities and state changes about entities. In this paper, we emphasize the importance of incorporating events
Static knowledge graph (SKG) embedding (SKGE) has been studied intensively in the past years. Recently, temporal knowledge graph (TKG) embedding (TKGE) has emerged. In this paper, we propose a Recursive Temporal Fact Embedding (RTFE) framework to tra