مجردة معظم مجموعات مهام NLP والأصناف اللغوية تفتقر إلى أمثلة في المجال للتدريب الخاضع للإشراف بسبب قلة البيانات المشروحة. كيف يمكن النماذج العصبية أن تجعل تعميمات فعالة للعينة من مجموعات لغات المهام مع البيانات المتاحة للموارد المنخفضة؟ في هذا العمل، نقترح نموذجا إيلائيا بايزيا لمساحة المعلمات العصبية. نفترض أن هذه المساحة يمكن أن تعصبها في متغيرات كامنة لكل لغة وكل مهمة. نحن نستنتج المشتريات حول هذه المتغيرات الكامنة بناء على بيانات من مجموعات لغة المهام المشاهدة من خلال الاستدلال المتغيرات. وهذا يتيح تصنيف صفري بالرصاص على مجموعات غير مرئية في وقت التنبؤ. على سبيل المثال، نظرا لبيانات التدريب للتعرف على الكيان المسمى (NER) في الفيتنامية ولليزة جزء من الكلام (POS) (POS) في Wolof، يمكن أن يؤدي نموذجنا إلى إجراء تنبؤات دقيقة ل NER في Wolof. على وجه الخصوص، نقوم بتجربة عينة متنوعة من 33 لغة من 4 قارات و 11 أسرة، وإظهار أن نموذجنا ينتج عنه نتائج قابلة للمقارنة أو أفضل من أساليب التحويل المتبادلة الصفرية من بين الفن. يتوفر الكود الخاص بنا في github.com/cambridgeltl/parameter-factorization.
Abstract Most combinations of NLP tasks and language varieties lack in-domain examples for supervised training because of the paucity of annotated data. How can neural models make sample-efficient generalizations from task--language combinations with available data to low-resource ones? In this work, we propose a Bayesian generative model for the space of neural parameters. We assume that this space can be factorized into latent variables for each language and each task. We infer the posteriors over such latent variables based on data from seen task--language combinations through variational inference. This enables zero-shot classification on unseen combinations at prediction time. For instance, given training data for named entity recognition (NER) in Vietnamese and for part-of-speech (POS) tagging in Wolof, our model can perform accurate predictions for NER in Wolof. In particular, we experiment with a typologically diverse sample of 33 languages from 4 continents and 11 families, and show that our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods. Our code is available at github.com/cambridgeltl/parameter-factorization.
References used
https://aclanthology.org/
We address the sampling bias and outlier issues in few-shot learning for event detection, a subtask of information extraction. We propose to model the relations between training tasks in episodic few-shot learning by introducing cross-task prototypes
In this paper, we study the problem of recognizing compositional attribute-object concepts within the zero-shot learning (ZSL) framework. We propose an episode-based cross-attention (EpiCA) network which combines merits of cross-attention mechanism a
Building automatic technical support system is an important yet challenge task. Conceptually, to answer a user question on a technical forum, a human expert has to first retrieve relevant documents, and then read them carefully to identify the answer
This paper describes our submission to SemEval 2021 Task 2. We compare XLM-RoBERTa Base and Large in the few-shot and zero-shot settings and additionally test the effectiveness of using a k-nearest neighbors classifier in the few-shot setting instead
Stance detection on social media can help to identify and understand slanted news or commentary in everyday life. In this work, we propose a new model for zero-shot stance detection on Twitter that uses adversarial learning to generalize across topic