تقوم المشفر المزدح المجرقة بإجراء استرجاع من خلال ترميز المستندات والاستعلامات في متجهات كثيفة منخفضة الأبعاد، حيث سجل كل وثيقة عن طريق المنتج الداخلي مع الاستعلام.نحن نبحث في قدرة هذه الهندسة المعمارية بالنسبة إلى نماذج كيس من الكلمات المتفرقة والشبكات العصبية الاهتمام.باستخدام كل من التحليلات النظرية والتجريبية، نقوم بإنشاء اتصالات بين بعد ترميز، الهامش بين الذهب والوثائق ذات المرتبة الأدنى، وطول الوثيقة، مما يشير إلى حد قيود في سعة الترميزات ذات الطول الثابت لدعم استرجاع الدقة الدقيقة للوثائق الطويلة.بناء على هذه الأفكار، نقترح نموذجا عصبا بسيطا يجمع بين كفاءة الترميز المزدوج مع بعض التعبير عن هياكل التعبير الأكثر تكلفة، واستكشاف الهجينة الكثيفة المتنارية للاستفادة من دقة الاسترجاع المتناقضة.تتفوق هذه النماذج بدائل قوية في استرجاع واسع النطاق.
Abstract Dual encoders perform retrieval by encoding documents and queries into dense low-dimensional vectors, scoring each document by its inner product with the query. We investigate the capacity of this architecture relative to sparse bag-of-words models and attentional neural networks. Using both theoretical and empirical analysis, we establish connections between the encoding dimension, the margin between gold and lower-ranked documents, and the document length, suggesting limitations in the capacity of fixed-length encodings to support precise retrieval of long documents. Building on these insights, we propose a simple neural model that combines the efficiency of dual encoders with some of the expressiveness of more costly attentional architectures, and explore sparse-dense hybrids to capitalize on the precision of sparse retrieval. These models outperform strong alternatives in large-scale retrieval.
References used
https://aclanthology.org/
The semantic matching capabilities of neural information retrieval can ameliorate synonymy and polysemy problems of symbolic approaches. However, neural models' dense representations are more suitable for re-ranking, due to their inefficiency. Sparse
Complex question answering often requires finding a reasoning chain that consists of multiple evidence pieces. Current approaches incorporate the strengths of structured knowledge and unstructured text, assuming text corpora is semi-structured. Build
In Arabic Language, diacritics are used to specify meanings as well as pronunciations. However, diacritics are often omitted from written texts, which increases the number of possible meanings and pronunciations. This leads to an ambiguous text and m
Dense neural text retrieval has achieved promising results on open-domain Question Answering (QA), where latent representations of questions and passages are exploited for maximum inner product search in the retrieval process. However, current dense
A text retrieval system for language learning returns reading materials at the appropriate difficulty level for the user. The system typically maintains a learner model on the user's vocabulary knowledge, and identifies texts that best fit the model.