يتغير مجال معالجة اللغة الطبيعية (NLP) بسرعة، مما يتطلب عروض الدورة التدريبية للتكيف مع تلك التغييرات، و NLP ليس فقط لعلماء الكمبيوتر؛إنه مجال يجب أن يكون متاحا لأي شخص لديه خلفية كافية.في هذه الورقة، أشرح كيف يمكن إعداد الطلاب الذين لديهم خلفيات علوم الكمبيوتر وعلوم البيانات جيدا لدورة NLP الشعبة العليا في جامعة ولاية كبيرة.تغطي الدورة نظرية الاحتمالات ونظرية المعلومات، واللطاقات الأولية، والآلة والتعلم العميق، مع محاولة لتحقيق التوازن بين الأفكار والمفاهيم النظرية مع التطبيقات العملية.أشرح أهداف الدورة والمواضيع والواجبات، والتفكير في التعديلات على الدورة خلال السنوات الأربع الماضية، وكذلك ردود الفعل من الطلاب.
The field of Natural Language Processing (NLP) changes rapidly, requiring course offerings to adjust with those changes, and NLP is not just for computer scientists; it's a field that should be accessible to anyone who has a sufficient background. In this paper, I explain how students with Computer Science and Data Science backgrounds can be well-prepared for an upper-division NLP course at a large state university. The course covers probability and information theory, elementary linguistics, machine and deep learning, with an attempt to balance theoretical ideas and concepts with practical applications. I explain the course objectives, topics and assignments, reflect on adjustments to the course over the last four years, as well as feedback from students.
References used
https://aclanthology.org/
Despite its proven efficiency in other fields, data augmentation is less popular in the context of natural language processing (NLP) due to its complexity and limited results. A recent study (Longpre et al., 2020) showed for example that task-agnosti
There are thousands of papers about natural language processing and computational linguistics, but very few textbooks. I describe the motivation and process for writing a college textbook on natural language processing, and offer advice and encouragement for readers who may be interested in writing a textbook of their own.
Recent studies show that many NLP systems are sensitive and vulnerable to a small perturbation of inputs and do not generalize well across different datasets. This lack of robustness derails the use of NLP systems in real-world applications. This tut
This article explores the potential for Natural Language Processing (NLP) to enable a more effective, prevention focused and less confrontational policing model that has hitherto been too resource consuming to implement at scale. Problem-Oriented Pol
Recent research has investigated quantum NLP, designing algorithms that process natural language in quantum computers, and also quantum-inspired algorithms that improve NLP performance on classical computers. In this survey, we review representative