اللغة العربية هي اللغة الرسمية البالغ 22 دولة، تحدث بأكثر من 400 مليون متحدث.تستخدم كل واحد من هذا البلد على الأقل لهجة محادثة الحياة اليومية.ثم، العربية لديها 22 لهجة على الأقل.يمكن كتابة كل لهجة في البرامج النصية العربية أو العربية.تركز أحدث الأبحاث على بناء نموذج لغة وجزعة تدريب لكل لهجة، في كل برنامج نصي.بعد هذه التقنية تعني إنشاء 46 موارد مختلفة (بما في ذلك اللغة العربية القياسية الحديثة، MSA) للتعامل مع لغة واحدة فقط.في هذه الورقة، استخرفنا مجموعة واحدة، ونقترح خوارزمية واحدة لإنشاء كائن تدريب واحد تلقائيا باستخدام بنية نموذج تصنيف واحد لتحليل المعنويات MSA ولهجات مختلفة.بعد مراجعة كوربوس التدريب يدويا، تتفوق النتائج التي تم الحصول عليها جميع نتائج الأدب البحثية ل Test Test Corpora.
Arabic is the official language of 22 countries, spoken by more than 400 million speakers. Each one of this country use at least on dialect for daily life conversation. Then, Arabic has at least 22 dialects. Each dialect can be written in Arabic or Arabizi Scripts. The most recent researches focus on constructing a language model and a training corpus for each dialect, in each script. Following this technique means constructing 46 different resources (by including the Modern Standard Arabic, MSA) for handling only one language. In this paper, we extract ONE corpus, and we propose ONE algorithm to automatically construct ONE training corpus using ONE classification model architecture for sentiment analysis MSA and different dialects. After manually reviewing the training corpus, the obtained results outperform all the research literature results for the targeted test corpora.
References used
https://aclanthology.org/
The rapid rise of online social networks like YouTube, Facebook, Twitter allows people to express their views more widely online. However, at the same time, it can lead to an increase in conflict and hatred among consumers in the form of freedom of s
In this paper, we present the details of the systems that we have submitted for the WAT 2021 MultiIndicMT: An Indic Language Multilingual Task. We have submitted two separate multilingual NMT models: one for English to 10 Indic languages and another
The prominence of figurative language devices, such as sarcasm and irony, poses serious challenges for Arabic Sentiment Analysis (SA). While previous research works tackle SA and sarcasm detection separately, this paper introduces an end-to-end deep
As the Internet grows in size, so does the amount of text based information that exists. For many application spaces it is paramount to isolate and identify texts that relate to a particular topic. While one-class classification would be ideal for su