Do you want to publish a course? Click here

Nuclear Magnetic Resonance Quantum Computing Using Liquid Crystal Solvents

137   0   0.0 ( 0 )
 Added by Lieven Vandersypen
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Liquid crystals offer several advantages as solvents for molecules used for nuclear magnetic resonance quantum computing (NMRQC). The dipolar coupling between nuclear spins manifest in the NMR spectra of molecules oriented by a liquid crystal permits a significant increase in clock frequency, while short spin-lattice relaxation times permit fast recycling of algorithms, and save time in calibration and signal-enhancement experiments. Furthermore, the use of liquid crystal solvents offers scalability in the form of an expanded library of spin-bearing molecules suitable for NMRQC. These ideas are demonstrated with the successful execution of a 2-qubit Grover search using a molecule ($^{13}$C$^{1}$HCl$_3$) oriented in a liquid crystal and a clock speed eight times greater than in an isotropic solvent. Perhaps more importantly, five times as many logic operations can be executed within the coherence time using the liquid crystal solvent.



rate research

Read More

The number of steps any classical computer requires in order to find the prime factors of an $l$-digit integer $N$ increases exponentially with $l$, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shors quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shors algorithm: factorization of ${N=15}$ (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to many quantum bit systems, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.
The system of electrons trapped in vacuum above the liquid helium surface displays the highest mobilities known in condensed matter physics. We provide a brief summary of the experimental and theoretical results obtained for this system. We then show that a quasi-2D set of N > 10^8 electrons in vacuum trapped in 1D hydrogenic levels above a micron-thick helium film can be used as an easily manipulated strongly interacting set of quantum bits. Individual electrons are laterally confined by micron sized metal pads below the helium. Information is stored in the lowest hydrogenic levels. Using electric fields at temperatures of 10 mK, changes in the wave function can be made in nanoseconds. Wave function coherence times are .1 millisecond. The wave function is read out using an inverted dc voltage which releases excited electrons from the surface, or using SETs attached to the metal pads which control the electrons.
This paper describes recent progress using nuclear magnetic resonance (NMR) as a platform for implementing quantum information processing (QIP) tasks. The basic ideas of NMR QIP are detailed, examining the successes and limitations of liquid and solid state experiments. Finally, a future direction for implementing quantum processors is suggested,utilizing both nuclear and electron spin degrees of freedom.
Quantum simulation uses a well-known quantum system to predict the behavior of another quantum system. Certain limitations in this technique arise, however, when applied to specific problems, as we demonstrate with a theoretical and experimental study of an algorithm to find the low-lying spectrum of a Hamiltonian. While the number of elementary quantum gates does scale polynomially with the size of the system, it increases inversely to the desired error bound $epsilon$. Making such simulations robust to decoherence using fault-tolerance constructs requires an additional factor of $1/ epsilon$ gates. These constraints are illustrated by using a three qubit nuclear magnetic resonance system to simulate a pairing Hamiltonian, following the algorithm proposed by Wu, Byrd, and Lidar.
169 - Ji Bian , Min Jiang , Jiangyu Cui 2017
This paper describes a general method for manipulation of nuclear spins in zero magnetic field. In the absence of magnetic fields, the spins lose the individual information on chemical shifts and inequivalent spins can only be distinguished by nuclear gyromagnetic ratios and spin-spin couplings. For spin-1/2 nuclei with different gyromagnetic ratios (i.e., different species) in zero magnetic field, we describe the scheme to realize a set of universal quantum logic gates, e.g., arbitrary single-qubit gates and two-qubit controlled-NOT gate. This method allows for universal quantum control in systems which might provide promising applications in materials science, chemistry, biology,quantum information processing and fundamental physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا