Do you want to publish a course? Click here

Characteristic uncertainty relations

141   0   0.0 ( 0 )
 Added by D. Trifonov
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

New uncertainty relations for n observables are established. The relations take the invariant form of inequalities between the characteristic coefficients of order r, r = 1,2,...,n, of the uncertainty matrix and the matrix of mean commutators of the observables. It is shown that the second and the third order characteristic inequalities for the three generators of SU(1,1) and SU(2) are minimized in the corresponding group-related coherent states with maximal symmetry.

rate research

Read More

Analyzing general uncertainty relations one can find that there can exist such pairs of non-commuting observables $A$ and $B$ and such vectors that the lower bound for the product of standard deviations $Delta A$ and $Delta B$ calculated for these vectors is zero: $Delta A,cdot,Delta B geq 0$. Here we discuss examples of such cases and some other inconsistencies which can be found performing a rigorous analysis of the uncertainty relations in some special cases. As an illustration of such cases matrices $(2times 2)$ and $(3 times 3)$ and the position--momentum uncertainty relation for a quantum particle in the box are considered. The status of the uncertainty relation in $cal PT$--symmetric quantum theory and the problems associated with it are also studied.
Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order $alpha$ rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.
In this paper we provide a new set of uncertainty principles for unitary operators using a sequence of inequalities with the help of the geometric-arithmetic mean inequality. As these inequalities are fine-grained compared with the well-known Cauchy-Schwarz inequality, our framework naturally improves the results based on the latter. As such, the unitary uncertainty relations based on our method outperform the best known bound introduced in [Phys. Rev. Lett. 120, 230402 (2018)] to some extent. Explicit examples of unitary uncertainty relations are provided to back our claims.
285 - K. Urbanowski 2019
The Heisenberg and Mandelstam-Tamm time-energy uncertainty relations are analyzed. The conlusion resulting from this analysis is that within the Quantum Mechanics of Schr{o}dinger and von Neumann, the status of these relations can not be considered as the same as the status of the position-momentum uncertainty relations, which are rigorous. The conclusion is that the time--energy uncertainty relations can not be considered as universally valid.
In this work we study various notions of uncertainty for angular momentum in the spin-s representation of SU(2). We characterize the uncertainty regions given by all vectors, whose components are specified by the variances of the three angular momentum components. A basic feature of this set is a lower bound for the sum of the three variances. We give a method for obtaining optimal lower bounds for uncertainty regions for general operator triples, and evaluate these for small s. Further lower bounds are derived by generalizing the technique by which Robertson obtained his state-dependent lower bound. These are optimal for large s, since they are saturated by states taken from the Holstein-Primakoff approximation. We show that, for all s, all variances are consistent with the so-called vector model, i.e., they can also be realized by a classical probability measure on a sphere of radius sqrt(s(s+1)). Entropic uncertainty relations can be discussed similarly, but are minimized by different states than those minimizing the variances for small s. For large s the Maassen-Uffink bound becomes sharp and we explicitly describe the extremalizing states. Measurement uncertainty, as recently discussed by Busch, Lahti and Werner for position and momentum, is introduced and a generalized observable (POVM) which minimizes the worst case measurement uncertainty of all angular momentum components is explicitly determined, along with the minimal uncertainty. The output vectors for the optimal measurement all have the same length r(s), where r(s)/s goes to 1 as s tends to infinity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا