Do you want to publish a course? Click here

Uncertainty relations: curiosities and inconsistencies

131   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Analyzing general uncertainty relations one can find that there can exist such pairs of non-commuting observables $A$ and $B$ and such vectors that the lower bound for the product of standard deviations $Delta A$ and $Delta B$ calculated for these vectors is zero: $Delta A,cdot,Delta B geq 0$. Here we discuss examples of such cases and some other inconsistencies which can be found performing a rigorous analysis of the uncertainty relations in some special cases. As an illustration of such cases matrices $(2times 2)$ and $(3 times 3)$ and the position--momentum uncertainty relation for a quantum particle in the box are considered. The status of the uncertainty relation in $cal PT$--symmetric quantum theory and the problems associated with it are also studied.



rate research

Read More

New uncertainty relations for n observables are established. The relations take the invariant form of inequalities between the characteristic coefficients of order r, r = 1,2,...,n, of the uncertainty matrix and the matrix of mean commutators of the observables. It is shown that the second and the third order characteristic inequalities for the three generators of SU(1,1) and SU(2) are minimized in the corresponding group-related coherent states with maximal symmetry.
Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order $alpha$ rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.
How violently do two quantum operators disagree? Different fields of physics feature different measures of incompatibility: (i) In quantum information theory, entropic uncertainty relations constrain measurement outcomes. (ii) In condensed matter and high-energy physics, the out-of-time-ordered correlator (OTOC) signals scrambling, the spread of information through many-body entanglement. We unite these measures, proving entropic uncertainty relations for scrambling. The entropies are of distributions over weak and strong measurements possible outcomes. The weak measurements ensure that the OTOC quasiprobability (a nonclassical generalization of a probability, which coarse-grains to the OTOC) governs terms in the uncertainty bound. The quasiprobability causes scrambling to strengthen the bound in numerical simulations of a spin chain. This strengthening shows that entropic uncertainty relations can reflect the type of operator disagreement behind scrambling. Generalizing beyond scrambling, we prove entropic uncertainty relations satisfied by commonly performed weak-measurement experiments. We unveil a physical significance of weak values (conditioned expectation values): as governing terms in entropic uncertainty bounds.
Various theories that aim at unifying gravity with quantum mechanics suggest modifications of the Heisenberg algebra for position and momentum. From the perspective of quantum mechanics, such modifications lead to new uncertainty relations which are thought (but not proven) to imply the existence of a minimal observable length. Here we prove this statement in a framework of sufficient physical and structural assumptions. Moreover, we present a general method that allows to formulate optimal and state-independent variance-based uncertainty relations. In addition, instead of variances, we make use of entropies as a measure of uncertainty and provide uncertainty relations in terms of min- and Shannon entropies. We compute the corresponding entropic minimal lengths and find that the minimal length in terms of min-entropy is exactly one bit.
285 - K. Urbanowski 2019
The Heisenberg and Mandelstam-Tamm time-energy uncertainty relations are analyzed. The conlusion resulting from this analysis is that within the Quantum Mechanics of Schr{o}dinger and von Neumann, the status of these relations can not be considered as the same as the status of the position-momentum uncertainty relations, which are rigorous. The conclusion is that the time--energy uncertainty relations can not be considered as universally valid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا