No Arabic abstract
It is shown that, given any finite set of pairs of random events in a Boolean algebra which are correlated with respect to a fixed probability measure on the algebra, the algebra can be extended in such a way that the extension contains events that can be regarded as common causes of the correlations in the sense of Reichenbachs definition of common cause. It is shown, further, that, given any quantum probability space and any set of commuting events in it which are correlated with respect to a fixed quantum state, the quantum probability space can be extended in such a way that the extension contains common causes of all the selected correlations, where common cause is again taken in the sense of Reichenbachs definition. It is argued that these results very strongly restrict the possible ways of disproving Reichenbachs Common Cause Principle.
The constraints arising for a general set of causal relations, both classically and quantumly, are still poorly understood. As a step in exploring this question, we consider a coherently controlled superposition of direct-cause and common-cause relationships between two events. We propose an implementation involving the spatial superposition of a mass and general relativistic time dilation. Finally, we develop a computationally efficient method to distinguish such genuinely quantum causal structures from classical (incoherent) mixtures of causal structures and show how to design experimental verifications of the nonclassicality of a causal structure.
We take a resource-theoretic approach to the problem of quantifying nonclassicality in Bell scenarios. The resources are conceptualized as probabilistic processes from the setting variables to the outcome variables having a particular causal structure, namely, one wherein the wings are only connected by a common cause. We term them common-cause boxes. We define the distinction between classical and nonclassical resources in terms of whether or not a classical causal model can explain the correlations. One can then quantify the relative nonclassicality of resources by considering their interconvertibility relative to the set of operations that can be implemented using a classical common cause (which correspond to local operations and shared randomness). We prove that the set of free operations forms a polytope, which in turn allows us to derive an efficient algorithm for deciding whether one resource can be converted to another. We moreover define two distinct monotones with simple closed-form expressions in the two-party binary-setting binary-outcome scenario, and use these to reveal various properties of the pre-order of resources, including a lower bound on the cardinality of any complete set of monotones. In particular, we show that the information contained in the degrees of violation of facet-defining Bell inequalities is not sufficient for quantifying nonclassicality, even though it is sufficient for witnessing nonclassicality. Finally, we show that the continuous set of convexly extremal quantumly realizable correlations are all at the top of the pre-order of quantumly realizable correlations. In addition to providing new insights on Bell nonclassicality, our work also sets the stage for quantifying nonclassicality in more general causal networks.
Quantum mechanics challenges our intuition on the cause-effect relations in nature. Some fundamental concepts, including Reichenbachs common cause principle or the notion of local realism, have to be reconsidered. Traditionally, this is witnessed by the violation of a Bell inequality. But are Bell inequalities the only signature of the incompatibility between quantum correlations and causality theory? Motivated by this question we introduce a general framework able to estimate causal influences between two variables, without the need of interventions and irrespectively of the classical, quantum, or even post-quantum nature of a common cause. In particular, by considering the simplest instrumental scenario -- for which violation of Bell inequalities is not possible -- we show that every pure bipartite entangled state violates the classical bounds on causal influence, thus answering in negative to the posed question and opening a new venue to explore the role of causality within quantum theory.
The duration, strength and structure of memory effects are crucial properties of physical evolution. Due to the invasive nature of quantum measurement, such properties must be defined with respect to the probing instruments employed. Here, using a photonic platform, we experimentally demonstrate this necessity via two paradigmatic processes: future-history correlations in the first process can be erased by an intermediate quantum measurement; for the second process, a noisy classical measurement blocks the effect of history. We then apply memory truncation techniques to recover an efficient description that approximates expectation values for multi-time observables. Our proof-of-principle analysis paves the way for experiments concerning more general non-Markovian quantum processes and highlights where standard open systems techniques break down.
We show the properties and characterization of coherence witnesses. We show methods for constructing coherence witnesses for an arbitrary coherent state. We investigate the problem of finding common coherence witnesses for certain class of states. We show that finitely many different witnesses $W_1, W_2, cdots, W_n$ can detect some common coherent states if and only if $sum_{i=1}^nt_iW_i$ is still a witnesses for any nonnegative numbers $t_i(i=1,2,cdots,n)$. We show coherent states play the role of high-level witnesses. Thus, the common state problem is changed into the question of when different high-level witnesses (coherent states) can detect the same coherence witnesses. Moreover, we show a coherent state and its robust state have no common coherence witness and give a general way to construct optimal coherence witnesses for any comparable states.