Do you want to publish a course? Click here

Common Coherence Witnesses and Common Coherent States

88   0   0.0 ( 0 )
 Added by Bang-Hai Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show the properties and characterization of coherence witnesses. We show methods for constructing coherence witnesses for an arbitrary coherent state. We investigate the problem of finding common coherence witnesses for certain class of states. We show that finitely many different witnesses $W_1, W_2, cdots, W_n$ can detect some common coherent states if and only if $sum_{i=1}^nt_iW_i$ is still a witnesses for any nonnegative numbers $t_i(i=1,2,cdots,n)$. We show coherent states play the role of high-level witnesses. Thus, the common state problem is changed into the question of when different high-level witnesses (coherent states) can detect the same coherence witnesses. Moreover, we show a coherent state and its robust state have no common coherence witness and give a general way to construct optimal coherence witnesses for any comparable states.



rate research

Read More

It is shown that, given any finite set of pairs of random events in a Boolean algebra which are correlated with respect to a fixed probability measure on the algebra, the algebra can be extended in such a way that the extension contains events that can be regarded as common causes of the correlations in the sense of Reichenbachs definition of common cause. It is shown, further, that, given any quantum probability space and any set of commuting events in it which are correlated with respect to a fixed quantum state, the quantum probability space can be extended in such a way that the extension contains common causes of all the selected correlations, where common cause is again taken in the sense of Reichenbachs definition. It is argued that these results very strongly restrict the possible ways of disproving Reichenbachs Common Cause Principle.
Coherence and entanglement are fundamental concepts in resource theory. The coherence (entanglement) of assistance is the coherence (entanglement) that can be extracted assisted by another party with local measurement and classical communication. We introduce and study the general coherence of assistance. First, in terms of real symmetric concave functions on the probability simplex, the coherence of assistance and the entanglement of assistance are shown to be in one-to-one correspondence. We then introduce two classes of quantum states: the assisted maximally coherent states and the assisted maximally entangled states. They can be transformed into maximally coherent or entangled pure states with the help of another party using local measurement and classical communication. We give necessary conditions for states to be assisted maximally coherent or assisted maximally entangled. Based on these, a unified framework between coherence and entanglement including coherence (entanglement) measures, coherence (entanglement) of assistance, coherence (entanglement) resources is proposed. Then we show that the coherence of assistance as well as entanglement of assistance are strictly larger than the coherence of convex roof and entanglement of convex roof for all full rank density matrices. So all full rank quantum states are distillable in the assisted coherence distillation.
Quantum coherence marks a deviation from classical physics, and has been studied as a resource for metrology and quantum computation. Finding reliable and effective methods for assessing its presence is then highly desirable. Coherence witnesses rely on measuring observables whose outcomes can guarantee that a state is not diagonal in a known reference basis. Here we experimentally measure a novel type of coherence witness that uses pairwise state comparisons to identify superpositions in a basis-independent way. Our experiment uses a single interferometric set-up to simultaneously measure the three pairwise overlaps among three single-photon states via Hong-Ou-Mandel tests. Besides coherence witnesses, we show the measurements also serve as a Hilbert-space dimension witness. Our results attest to the effectiveness of pooling many two-state comparison tests to ascertain various relational properties of a set of quantum states.
91 - Yao Yao , Dong Li , 2020
As an analogy of best separable approximation (BSA) in the framework of entanglement theory, here we concentrate on the notion of best incoherent approximation, with application to characterizing and quantifying quantum coherence. From both analytical and numerical perspectives, we have demonstrated that the weight-based coherence measure displays some unusual properties, in sharp contrast to other popular coherence quantifiers. First, by deriving a closed formula for qubit states, we have showed the weight-based coherence measure exhibits a rich (geometrical) structure even in this simplest case. Second, we have identified the existence of mixed maximally coherent states (MMCS) with respect to this coherence measure and discussed the characteristic feature of MMCS in high-dimensional Hilbert spaces. Especially, we present several important families of MMCS by gaining insights from the numerical simulations. Moreover, it is pointed out that some considerations in this work can be generalized to general convex resource theories and a numerical method of improving the computational efficiency for finding the BSA is also discussed.
66 - Bang-Hai Wang 2016
Quantum entanglement lies at the heart of quantum mechanical and quantum information processing. Following the question who emph{witnesses} entanglement witnesses, we show entangled states play as the role of super entanglement witnesses. We show separable states play the role of super super entanglement witnesses and witness other observables than entanglement witnesses. We show that there exists a hierarchy structure of witnesses and there exist witnesses everywhere. Furthermore, we show the properties and characterization of entangled states as super entanglement witnesses. By the role of super witnesses of entangled states, we immediately find the question when different entanglement witnesses can detect the same entangled states [{it Phys. Lett. A }{bf 356} 402 (2006)] is the same as the question when different entangled states can be detected by the same entanglement witnesses [{it Phys. Rev. A} {bf 75} 052333 (2007)]. By the role of witnesses, we define finer entangled states and optimal entangled states. The definition gives a nonnumeric measurement of entanglement and an unambiguous discrimination of entangled states, and the procedure of optimization for a general entangled state $rho$ is just finding the best separable approximation (BSA) to $rho$ in [ {it Phys. Rev. Lett.} {bf 80} 2261 (1998)].}
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا