Do you want to publish a course? Click here

Errors in trapped-ion quantum gates due to spontaneous photon scattering

71   0   0.0 ( 0 )
 Added by Roee Ozeri
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the error in trapped-ion, hyperfine qubit, quantum gates due to spontaneous scattering of photons from the gate laser beams. We investigate single-qubit rotations that are based on stimulated Raman transitions and two-qubit entangling phase-gates that are based on spin-dependent optical dipole forces. This error is compared between different ion species currently being investigated as possible quantum information carriers. For both gate types we show that with realistic laser powers the scattering error can be reduced to below current estimates of the fault-tolerance error threshold.



rate research

Read More

We propose an architecture and methodology for large-scale quantum simulations using hyperfine states of trapped-ions in an arbitrary-layout microtrap array with laserless interactions. An ion is trapped at each site, and the electrode structure provides for the application of single and pairwise evolution operators using only locally created microwave and radio-frequency fields. The avoidance of short-lived atomic levels during evolution effectively eliminates errors due to spontaneous scattering; this may allow scaling of quantum simulators based on trapped ions to much larger systems than currently estimated. Such a configuration may also be particularly appropriate for one-way quantum computing with trapped-ion cluster states.
Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multi-qubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser beam control and motional state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.
We demonstrate laser-driven two-qubit and single-qubit logic gates with fidelities 99.9(1)% and 99.9934(3)% respectively, significantly above the approximately 99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed/fidelity trade-off for the two-qubit gate, for gate times between 3.8$mu$s and 520$mu$s, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.
Parallel operations in conventional computing have proven to be an essential tool for efficient and practical computation, and the story is not different for quantum computing. Indeed, there exists a large body of works that study advantages of parallel implementations of quantum gates for efficient quantum circuit implementations. Here, we focus on the recently invented efficient, arbitrary, simultaneously entangling (EASE) gates, available on a trapped-ion quantum computer. Leveraging its flexibility in selecting arbitrary pairs of qubits to be coupled with any degrees of entanglement, all in parallel, we show a $n$-qubit Clifford circuit can be implemented using $6log(n)$ EASE gates, a $n$-qubit multiply-controlled NOT gate can be implemented using $3n/2$ EASE gates, and a $n$-qubit permutation can be implemented using six EASE gates. We discuss their implications to near-term quantum chemistry simulations and the state of the art pattern matching algorithm. Given Clifford + multiply-controlled NOT gates form a universal gate set for quantum computing, our results imply efficient quantum computation by EASE gates, in general.
Various quantum applications can be reduced to estimating expectation values, which are inevitably deviated by operational and environmental errors. Although errors can be tackled by quantum error correction, the overheads are far from being affordable for near-term technologies. To alleviate the detrimental effects of errors, quantum error mitigation techniques have been proposed, which require no additional qubit resources. Here, we benchmark the performance of a quantum error mitigation technique based on probabilistic error cancellation in a trapped-ion system. Our results clearly show that effective gate fidelities exceed physical fidelities, i.e. we surpass the break-even point of eliminating gate errors, by programming quantum circuits. The error rates are effectively reduced from $(1.10pm 0.12)times10^{-3}$ to $(1.44pm 5.28)times10^{-5}$ and from $(0.99pm 0.06)times10^{-2}$ to $(0.96pm 0.10)times10^{-3}$ for single- and two-qubit gates, respectively. Our demonstration opens up the possibility of implementing high-fidelity computations on a near-term noisy quantum device.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا