Do you want to publish a course? Click here

Point Estimation of States of Finite Quantum Systems

57   0   0.0 ( 0 )
 Added by Katalin Hangos
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The estimation of the density matrix of a $k$-level quantum system is studied when the parametrization is given by the real and imaginary part of the entries and they are estimated by independent measurements. It is established that the properties of the estimation procedure depend very much on the invertibility of the true state. In particular, in case of a pure state the estimation is less efficient. Moreover, several estimation schemes are compared for the unknown state of a qubit when one copy is measured at a time. It is shown that the average mean quadratic error matrix is the smallest if the applied observables are complementary. The results are illustrated by computer simulations.



rate research

Read More

We compute concurrence, a measure of bipartite entanglement, of the first excited state of the $1$-D Heisenberg frustrated $J_1$-$J_2$ spin-chain and observe a sudden change in the entanglement of the eigen state near the coupling strength $alpha=J_2/J_1approx0.241$, where a quantum phase transition from spin-fluid phase to dimer phase has been previously reported. We numerically observe this phenomena for spin-chain with $8$ sites to $16$ sites, and the value of $alpha$ at which the change in entanglement is observed asymptotically tends to a value $alpha_capprox0.24116$. We have calculated the finite-size scaling exponents for spin chains with even and odd spins. It may be noted that bipartite as well as multipartite entanglement measures applied on the ground state of the system, fail to detect any quantum phase transition from the gapless to the gapped phase in the $1$-D Heisenberg frustrated $J_1$-$J_2$ spin-chain. Furthermore, we measure bipartite entanglement of first excited states for other spin models like $2$-D Heisenberg $J_1$-$J_2$ model and Shastry-Sutherland model and find similar indications of quantum phase transitions.
We investigate the encoding of higher-dimensional logic into quantum states. To that end we introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions and investigate their structure as an algebra over the ring of integers modulo $d$. We point out that the polynomiality of the function is the deciding property for associating hypergraphs to states. Given a polynomial, we map it to a tensor-edge hypergraph, where each edge of the hypergraph is associated with a tensor. We observe how these states generalize the previously defined qudit hypergraph states, especially through the study of a group of finite-function-encoding Pauli stabilizers. Finally, we investigate the structure of FFE states under local unitary operations, with a focus on the bipartite scenario and its connections to the theory of complex Hadamard matrices.
In this paper we present finite-key security analysis for quantum key distribution protocol based on weak coherent (in particular phase-coded) states using a fully quantum asymptotic equipartition property technique. This work is the extension of the proof for non-orthogonal states on the coherent states. Below we consider two types of attacks each of them maximizes either Alice-Eve or Eve-Bob mutual information. The cornerstone of this paper is that we do assume the possibility of crucial intercept-resend attack based on errorless unambiguous state discrimination measurement. We demonstrate that Holevo bound always gives the highest mutual information between Alice and Eve regardless particular kind of isometry. As the main result we present the dependence of the extracted secret key length. As the example we implement the proposed analysis to the subcarrier wave quantum key distribution protocol.
In this paper, we investigate the problem of estimating the phase of a coherent state in the presence of unavoidable noisy quantum states. These unwarranted quantum states are represented by outlier quantum states in this study. We first present a statistical framework of robust statistics in a quantum system to handle outlier quantum states. We then apply the method of M-estimators to suppress untrusted measurement outcomes due to outlier quantum states. Our proposal has the advantage over the classical methods in being systematic, easy to implement, and robust against occurrence of noisy states.
In almost all quantum applications, one of the key steps is to verify that the fidelity of the prepared quantum state meets the expectations. In this paper, we propose a new approach to solve this problem using machine learning techniques. Compared to other fidelity estimation methods, our method is applicable to arbitrary quantum states, the number of required measurement settings is small, and this number does not increase with the size of the system. For example, for a general five-qubit quantum state, only four measurement settings are required to predict its fidelity with $pm1%$ precision in a non-adversarial scenario. This machine learning-based approach for estimating quantum state fidelity has the potential to be widely used in the field of quantum information.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا