No Arabic abstract
In this paper, we investigate the problem of estimating the phase of a coherent state in the presence of unavoidable noisy quantum states. These unwarranted quantum states are represented by outlier quantum states in this study. We first present a statistical framework of robust statistics in a quantum system to handle outlier quantum states. We then apply the method of M-estimators to suppress untrusted measurement outcomes due to outlier quantum states. Our proposal has the advantage over the classical methods in being systematic, easy to implement, and robust against occurrence of noisy states.
We propose a machine learning framework for parameter estimation of single mode Gaussian quantum states. Under a Bayesian framework, our approach estimates parameters of suitable prior distributions from measured data. For phase-space displacement and squeezing parameter estimation, this is achieved by introducing Expectation-Maximization (EM) based algorithms, while for phase parameter estimation an empirical Bayes method is applied. The estimated prior distribution parameters along with the observed data are used for finding the optimal Bayesian estimate of the unknown displacement, squeezing and phase parameters. Our simulation results show that the proposed algorithms have estimation performance that is very close to that of Genie Aided Bayesian estimators, that assume perfect knowledge of the prior parameters. Our proposed methods can be utilized by experimentalists to find the optimum Bayesian estimate of parameters of Gaussian quantum states by using only the observed measurements without requiring any knowledge about the prior distribution parameters.
We introduce a geometric quantification of quantum coherence in single-mode Gaussian states and we investigate the behavior of distance measures as functions of different physical parameters. In the case of squeezed thermal states, we observe that re-quantization yields an effect of noise-enhanced quantum coherence for increasing thermal photon number.
We calculate the quantum Cramer--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We apply the formula to the problems of estimating phase, purity, loss, amplitude, and squeezing. In the case of the simultaneous measurement of several parameters, we provide the full quantum Fisher information matrix. Our results unify previously known partial results, and constitute a complete solution to the problem of knowing the best possible sensitivity of measurements based on a single-mode Gaussian state.
We derive the form of the quantum filter equation describing the continuous observation of the phase of a quantum system in an arm of an interferometer via non-demolition measurements when the statistics of an input field used for the indirect measurement are in a general coherent state. Both quadrature homodyne detection and photon-counting dection schemes are covered, and we solve the linearized filter for a specific application.
We address the estimation of the loss parameter of a bosonic channel probed by arbitrary signals. Unlike the optimal Gaussian probes, which can attain the ultimate bound on precision asymptotically either for very small or very large losses, we prove that Fock states at any fixed photon number saturate the bound unconditionally for any value of the loss. In the relevant regime of low-energy probes, we demonstrate that superpositions of the first low-lying Fock states yield an absolute improvement over any Gaussian probe. Such few-photon states can be recast quite generally as truncations of de-Gaussified photon-subtracted states.